scholarly journals Self-organized composites of multiwalled carbon nanotubes and nematic liquid crystal 5CB: optical singularities and percolation behavior in electrical conductivity

2009 ◽  
Author(s):  
V. V. Ponevchinsky ◽  
A. I. Goncharuk ◽  
V. I. Vasil'ev ◽  
N. I. Lebovka ◽  
M. S. Soskin
2011 ◽  
Vol 115 (44) ◽  
pp. 21652-21658 ◽  
Author(s):  
Weiwei Tie ◽  
Gyu Hyung Yang ◽  
Surjya Sarathi Bhattacharyya ◽  
Young Hee Lee ◽  
Seung Hee Lee

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Dinesh Kumar ◽  
Sonia Nain ◽  
Neena ◽  
Hemant Pal ◽  
Ravi Kumar

Nanoindentation hardness and elastic modulus of the silver/MWCNT (multiwalled carbon nanotubes) composites, fabricated by modified wet mixing technique, are studied in the present work. CNT reinforced silver nanocomposites, fabricated by introducing 4.5 volume percentages of CNT in the silver matrix, have increased elastic modulus and approximately 50% higher hardness than pure nanosilver. It is also observed from the results that the electrical conductivity of the fabricated materials was decreased by increasing the CNTs volume %.


2016 ◽  
Vol 50 (23) ◽  
pp. 3283-3290 ◽  
Author(s):  
K Abazine ◽  
H Anakiou ◽  
M El Hasnaoui ◽  
MPF Graça ◽  
MA Fonseca ◽  
...  

Small ◽  
2010 ◽  
Vol 6 (16) ◽  
pp. 1806-1811 ◽  
Author(s):  
Lakshman K. Randeniya ◽  
Avi Bendavid ◽  
Philip J. Martin ◽  
Canh-Dung Tran

2016 ◽  
Vol 51 (2) ◽  
pp. 199-208 ◽  
Author(s):  
B Ribeiro ◽  
RB Pipes ◽  
ML Costa ◽  
EC Botelho

Polyphenylene sulfide-based nanocomposites filled with unmodified multiwalled carbon nanotubes from 0.5 wt% to 8.0 wt% have been prepared by melt mixing technique with a single-screw extruder and hot press. Transmission electronic microscopy and scanning electron microscopy analysis were carried out in order to assess the multiwalled carbon nanotubes dispersion throughout the polyphenylene sulfide matrix. Electrical conductivity of the polymer was dramatically enhanced by about 11 decades between 2.0 wt% and 3.0 wt% of nanotubes, suggesting the formation of three-dimensional conductive network within the polymeric matrix. The storage modulus (G′) of neat polyphenylene sulfide presented an increase by two orders of magnitude when 2.0 wt% of pristine multiwalled carbon nanotubes was considered, with the formation of an interconnected nanotube structure, indicative of “pseudo-solid-like” behavior. In addition, percolation networks were formed when the loading levels achieve up to 1.5 wt% for multiwalled carbon nanotubes/polyphenylene sulfide composites.


Sign in / Sign up

Export Citation Format

Share Document