Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

Author(s):  
Pituk Bunnoon ◽  
Kusumal Chalermyanont ◽  
Chusak Limsakul
2020 ◽  
pp. 1-11
Author(s):  
Hongjiang Ma ◽  
Xu Luo

The irrationality between the procurement and distribution of the logistics system increases unnecessary circulation links and greatly reduces logistics efficiency, which not only causes a waste of transportation resources, but also increases logistics costs. In order to improve the operation efficiency of the logistics system, based on the improved neural network algorithm, this paper combines the logistic regression algorithm to construct a logistics demand forecasting model based on the improved neural network algorithm. Moreover, according to the characteristics of the complexity of the data in the data mining task itself, this article optimizes the ladder network structure, and combines its supervisory decision-making part with the shallow network to make the model more suitable for logistics demand forecasting. In addition, this paper analyzes the performance of the model based on examples and uses the grey relational analysis method to give the degree of correlation between each influencing factor and logistics demand. The research results show that the model constructed in this paper is reasonable and can be analyzed from a practical perspective.


2016 ◽  
Vol 116 (6) ◽  
pp. 1242-1258 ◽  
Author(s):  
Ratree Kummong ◽  
Siriporn Supratid

Purpose – Accurate forecast of tourist arrivals is crucial for Thailand since the tourism industry is a major economic factor of the country. However, a nonstationarity, normally consisted in nonlinear tourism time series can seriously ruin the forecasting computation. The purpose of this paper is to propose a hybrid forecasting method, namely discrete wavelet decomposition (DWD)-NARX, which combines DWD and the nonlinear autoregressive neural network with exogenous input (NARX) to cope with such nonstationarity, as a consequence, improve the effectiveness of the demand-side management activities. Design/methodology/approach – According to DWD-NARX, wavelet decomposition is executed for efficiently extracting the hidden significant, temporal features contained in the nonstationary time series. Then, each extracted feature set at a particular resolution level along with a relative price as an exogenous input factor are fed into NARX for further forecasting. Finally, the forecasting results are reconstructed. Forecasting performance measures rely on mean absolute percentage error, mean absolute error as well as mean square error. Model overfitting avoidance is also considered. Findings – The results indicate the superiority of the DWD-NARX over other efficient related neural forecasters in the cases of high forecasting performance rate as well as competently coping with model overfitting. Research limitations/implications – The scope of this study is confined to Thailand tourist arrivals forecast based on short-term projection. To resolve such limitations, future research should aim to apply the generalization capability of DWD-NARX on other domains of managerial time series forecast under long-term projection environment. However, the exogenous input factor is to be empirically revised on domain-by-domain basis. Originality/value – Few works have been implemented either to handle the nonstationarity, consisted in nonlinear, unpredictable time series, or to achieve great success on finding an appropriate and effective exogenous forecasting input. This study applies DWD to attain efficient feature extraction; then, utilizes the competent forecaster, NARX. This would comprehensively and specifically deal with the nonstationarity difficulties at once. In addition, this study finds the effectiveness of simply using a relative price, generated based on six top-ranked original tourist countries as an exogenous forecasting input.


Author(s):  
Pituk Bunnoon

One of most important elements in electric power system planning is load forecasts. So, in this paper proposes the load demand forecasts using de-noising wavelet transform (DNWT) integrated with neural network (NN) methods. This research, the case study uses peak load demand of Thailand (Electricity Generating Authority of Thailand: EGAT). The data of demand will be analyzed with many influencing variables for selecting and classifying factors. In the research, the de-noising wavelet transform uses for decomposing the peak load signal into 2 components these are detail and trend components. The forecasting method using the neural network algorithm is used. The work results are shown a good performance of the model proposed. The result may be taken to the one of decision in the power systems operation.


2020 ◽  
Vol 4 (2) ◽  
pp. 10
Author(s):  
Najat Hassan Abdulkareem

Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to 1 year ahead. It suits outage and maintenance planning, as well as load switching operation. There is an on-going attention toward putting new approaches to the task. Recently, artificial neural network has played a successful role in various applications. This paper is presents a monthly peak load demand forecasting for Sulaimani (located in North Iraq) using the most widely used traditional method based on an artificial natural network, the performance of the model is tested on the actual historical monthly demand of the governorate for the years 2014–2018. The standard mean absolute percentage error (MAPE) method is used to evaluate the accuracy of forecasting models, the results obtained show a very good estimation of the load. The MAPE is 0.056.


Author(s):  
Pituk Bunnoon

One of most important elements in electric power system planning is load forecasts. So, in this paper proposes the load demand forecasts using de-noising wavelet transform (DNWT) integrated with neural network (NN) methods. This research, the case study uses peak load demand of Thailand (Electricity Generating Authority of Thailand: EGAT). The data of demand will be analyzed with many influencing variables for selecting and classifying factors. In the research, the de-noising wavelet transform uses for decomposing the peak load signal into 2 components these are detail and trend components. The forecasting method using the neural network algorithm is used. The work results are shown a good performance of the model proposed. The result may be taken to the one of decision in the power systems operation.


Sign in / Sign up

Export Citation Format

Share Document