Single-photon detection in time-of-flight-depth imaging and quantum key distribution

2011 ◽  
Author(s):  
Gerald S. Buller ◽  
Robert J. Collins ◽  
Patrick J. Clarke ◽  
Nils J. Krichel ◽  
Aongus McCarthy ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wei Li ◽  
Le Wang ◽  
Shengmei Zhao

Abstract Two time-reversal quantum key distribution (QKD) schemes are the quantum entanglement based device-independent (DI)-QKD and measurement-device-independent (MDI)-QKD. The recently proposed twin field (TF)-QKD, also known as phase-matching (PM)-QKD, has improved the key rate bound from O(η) to O$$(\sqrt{{\boldsymbol{\eta }}})$$ ( η ) with η the channel transmittance. In fact, TF-QKD is a kind of MDI-QKD but based on single-photon detection. In this paper, we propose a different PM-QKD based on single-photon entanglement, referred to as single-photon entanglement-based phase-matching (SEPM)-QKD, which can be viewed as a time-reversed version of the TF-QKD. Detection loopholes of the standard Bell test, which often occur in DI-QKD over long transmission distances, are not present in this protocol because the measurement settings and key information are the same quantity which is encoded in the local weak coherent state. We give a security proof of SEPM-QKD and demonstrate in theory that it is secure against all collective attacks and beam-splitting attacks. The simulation results show that the key rate enjoys a bound of O$$(\sqrt{{\boldsymbol{\eta }}})$$ ( η ) with respect to the transmittance. SEPM-QKD not only helps us understand TF-QKD more deeply, but also hints at a feasible approach to eliminate detection loopholes in DI-QKD for long-distance communications.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Shi-Hai Sun ◽  
Mu-Sheng Jiang ◽  
Xiang-Chun Ma ◽  
Chun-Yan Li ◽  
Lin-Mei Liang

Abstract Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.


2013 ◽  
Vol 58 (10) ◽  
pp. 1145-1149 ◽  
Author(s):  
SiJing Chen ◽  
DengKuan Liu ◽  
LiXing You ◽  
YongLiang Wang ◽  
LongQing Qiu ◽  
...  

2013 ◽  
Vol 52 (14) ◽  
pp. 3241 ◽  
Author(s):  
Sijing Chen ◽  
Dengkuan Liu ◽  
Wenxing Zhang ◽  
Lixing You ◽  
Yuhao He ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4850
Author(s):  
Aurora Maccarone ◽  
Giulia Acconcia ◽  
Ulrich Steinlehner ◽  
Ivan Labanca ◽  
Darryl Newborough ◽  
...  

We present an optical depth imaging system suitable for highly scattering underwater environments. The system used the time-correlated single-photon counting (TCSPC) technique and the time-of-flight approach to obtain depth profiles. The single-photon detection was provided by a linear array of single-photon avalanche diode (SPAD) detectors fabricated in a customized silicon fabrication technology for optimized efficiency, dark count rate, and jitter performance. The bi-static transceiver comprised a pulsed laser diode source with central wavelength 670 nm, a linear array of 16 × 1 Si-SPAD detectors, with a dedicated TCSPC acquisition module. Cylindrical lenses were used to collect the light scattered by the target and image it onto the sensor. These laboratory-based experiments demonstrated single-photon depth imaging at a range of 1.65 m in highly scattering conditions, equivalent up to 8.3 attenuation lengths between the system and the target, using average optical powers of up to 15 mW. The depth and spatial resolution of this sensor were investigated in different scattering conditions.


2013 ◽  
Vol 21 (7) ◽  
pp. 8904 ◽  
Author(s):  
Aongus McCarthy ◽  
Nils J. Krichel ◽  
Nathan R. Gemmell ◽  
Ximing Ren ◽  
Michael G. Tanner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document