Data-driven ultrasonic signal analysis using empirical mode decomposition for nondestructive material evaluation

2012 ◽  
Author(s):  
Bichuan Shen ◽  
Chi-Hau Chen
2013 ◽  
Vol 51 (7) ◽  
pp. 811-821 ◽  
Author(s):  
Muhammad Kaleem ◽  
Behnaz Ghoraani ◽  
Aziz Guergachi ◽  
Sridhar Krishnan

Author(s):  
Yibo Li ◽  
Junlin Li ◽  
Liying Sun ◽  
Shijiu Jin ◽  
Shenghua Han

Corrosion in pipeline is a significant problem in the oil industry and there is also much interest in reducing leak due to corrosion. Correlation techniques are widely used in leak detection, and these have been extremely effective when attempting to locate leaks in metal pipes. Acoustic emission is a new non-destructive pipeline inspection technology which can be used to monitor crucial part of pipelines and detect pipe corrosion or leak in real time. However, AE signals causing by corrosion and leak are liable to noise interference on field. Aiming at solving the noise interference problems and increase the detection sensitivity and location accuracy of the leak, advanced signal analysis method based on Empirical Mode Decomposition were researched. Empirical Mode Decomposition is a great breakthrough in non-stable signal analysis and it decomposes the signals into a sum of finite intrinsic mode functions (IMF), which have real physical meaning. In the experiment, the leak signals from a 30 m pipeline were decomposed into 9 intrinsic mode functions by EMD, among which some IMF components containing typical AE characteristic can be selected to reconstruct the signal, and thus intrinsic characteristic of leak signal could be extracted and noise interference would be eliminated. Location accuracy of the leaking hole calculated with the reconstructed signals based on EMD algorithm was increased 64%.


Generally, two or more faults occur simultaneously in the bearings. These Compound Faults (CF) in bearing, are most difficult type of faults to detect, by any data-driven method including machine learning. Hence, it is a primary requirement to decompose the fault vibration signals logically, so that frequencies can be grouped in parts. Empirical Mode Decomposition (EMD) is one of the simplest techniques of decomposition of signals. In this paper we have used Ensemble Empirical Mode Decomposition (EEMD) technique for compound fault detection/identification. Ensembled Empirical Mode Decomposition is found useful, where a white noise helps to detect the bearing frequencies. The graphs show clearly the capability of EEMD to detect the multiple faults in rolling bearings.


Sign in / Sign up

Export Citation Format

Share Document