Status of Nonsilicon Photovoltaic Solar Cell Research

Author(s):  
S. K. Deb ◽  
W. L. Wallace
2015 ◽  
Vol 34 (3) ◽  
pp. 401-410 ◽  
Author(s):  
A. Aboulhassan ◽  
D. Baum ◽  
O. Wodo ◽  
B. Ganapathysubramanian ◽  
A. Amassian ◽  
...  

Author(s):  
Karim Salim ◽  
◽  
M.N Amroun ◽  
K Sahraoui ◽  
W Azzoui ◽  
...  

Increasing the efficiency of solar cells relies on the surface of the solar cell. In this work, we simulated a textured silicon solar cell. This simulation allowed us to predict the values of the surface parameters such as the angle and depth between the pyramids for an optimal photovoltaic conversion where we found the Icc: 1.783 (A) and Vco: 0.551 (V) with a cell efficiency of about 13.56%. On the other hand, we performed another simulation of a non-textured solar cell to compare our values and found Icc: 1.623 (A) and Vco: 0.556 (V) with an efficiency of about 12.76%.


2021 ◽  
Vol 26 (4) ◽  
pp. 113-119
Author(s):  
FRANK ONAIFO ◽  
AKPOFURE ALEXANDER OKANDEJI ◽  
OLAMIDE AJETUNMOBI ◽  
DAVID BALOGUN

This paper studies the effect of temperature, humidity and irradiance on the power generated by a photovoltaic solar cell. This was achieved using pyranometer for determining the solar radiation, wet and dry thermometer for measuring humidity, and digital multimeter for voltage and current measurement. The result of the study show that power generation increases with increase of solar irradiance. Additionally, changes of humidity level and temperature do not significantly affect solar power generation. Furthermore, it was also observed that high temperatures and higher humidity levels accelerate the corrosion process on the solar cells which reduces the efficiency of the cells.


Sign in / Sign up

Export Citation Format

Share Document