scholarly journals EFFECT OF TEMPERATURE, HUMIDITY AND IRRADIANCE ON SOLAR POWER GENERATION

2021 ◽  
Vol 26 (4) ◽  
pp. 113-119
Author(s):  
FRANK ONAIFO ◽  
AKPOFURE ALEXANDER OKANDEJI ◽  
OLAMIDE AJETUNMOBI ◽  
DAVID BALOGUN

This paper studies the effect of temperature, humidity and irradiance on the power generated by a photovoltaic solar cell. This was achieved using pyranometer for determining the solar radiation, wet and dry thermometer for measuring humidity, and digital multimeter for voltage and current measurement. The result of the study show that power generation increases with increase of solar irradiance. Additionally, changes of humidity level and temperature do not significantly affect solar power generation. Furthermore, it was also observed that high temperatures and higher humidity levels accelerate the corrosion process on the solar cells which reduces the efficiency of the cells.

RSC Advances ◽  
2015 ◽  
Vol 5 (75) ◽  
pp. 60804-60813 ◽  
Author(s):  
Jung Woo Leem ◽  
Jae Su Yu

Inverted compound eye structured polydimethylsiloxane (i.e., ICESs PDMS) antireflection layer enhances the solar power generation of encapsulated III–V solar cells.


RSC Advances ◽  
2015 ◽  
Vol 5 (75) ◽  
pp. 61284-61289 ◽  
Author(s):  
Joo Ho Lim ◽  
Jung Woo Leem ◽  
Jae Su Yu

A negatively tapered nanohole-patterned polydimethylsiloxane (PDMS) antireflective protection layer with a hydrophobic surface improves the sunlight absorption of dye-sensitized solar cells.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4602 ◽  
Author(s):  
Choi ◽  
Choi ◽  
Kim ◽  
Ryu ◽  
Rim ◽  
...  

A new curved-type reflector for solar power generation is proposed. By adopting the curved-type reflector between consecutive solar panel arrays, all incoming sunlight can be utilized and thus, the generated power is significantly increased. Furthermore, the proposed curved-type reflector can be generally used in four seasons regardless of the altitude or angle of the installation environment. The optimum design rule for the curved-reflector, comparing to a plane-type reflector, is completely developed in this paper. A new solar cell configuration best fit for the proposed curved-reflector is also provided. Experimental results showed that the curved-type reflector improves the spatial average solar power by 61% compared to no reflector case, which is even 11% higher than the plane-type reflector. Reflectors, especially curved-type reflectors, are found to be one of promising solutions for highly efficient solar power generation.


2019 ◽  
Vol 11 (23) ◽  
pp. 6647 ◽  
Author(s):  
Suntiti Yoomak ◽  
Theerasak Patcharoen ◽  
Atthapol Ngaopitakkul

Solar rooftop systems in the residential sector have been rapidly increased in the term of installed capacity. There are various factors, such as climate, temperature, and solar radiation, that have effects on solar power generation efficiency. This paper presents a performance assessment of a solar system installed on the rooftop of residence in different regions of Thailand by using PSIM simulation. Solar rooftop installation comparison in different regions is carried out to evaluate the suitable location. In addition, three types of solar panels are used in research: monocrystalline, polycrystalline, and thin-film. The electrical parameters of real power and energy generated from the systems are investigated and analyzed. Furthermore, the economic evaluation of different solar rooftop system sizes using the monocrystalline module is investigated by using economic indicators of discounted payback period (DPP), net present value (NPV), internal rate of return (IRR), and profitability index (PI). Results show that the central region of Thailand is a suitable place for installing solar rooftop in terms of solar radiation, and the temperature has more solar power generation capacity than the other regions. The monocrystalline and polycrystalline solar panels can generate maximum power close to each other. All solar rooftop sizes with the Feed-in Tariff (FiT) scheme give the same DPP of 6.1 years, IRR of 15%, and PI of 2.57 which are better than the cases without the FiT scheme. However, a large-scale installation of solar rooftop systems can receive more electrical energy produced from the solar rooftop systems. As a result, the larger solar rooftop system sizes can achieve better economic satisfaction.


2019 ◽  
Vol 3 (9) ◽  
pp. 2456-2463 ◽  
Author(s):  
Leiping Duan ◽  
Haimang Yi ◽  
Zhimeng Wang ◽  
Yu Zhang ◽  
Faiazul Haque ◽  
...  

Semitransparent organic solar cells (STOSCs) are of great interest in both academic and industrial fields since they can be easily used as building windows to achieve solar power generation in building façades.


2019 ◽  
Vol 33 (2) ◽  
pp. 45-58
Author(s):  
Krishna Raj Adhikari

The measurements of solar radiation for Biratnagar (BRT), Kathmandu (KTM), Pokhara (PKR) and Jumla (JML) have been undertaken using CMP 6 pyranometers from SAHR/IOE/TU, Nepal. Solar radiation and the other meteorological data have been collected from the archives of Department of Hydrology and Meteorology, Government of Nepal (DHM/GoN) to analyze the daily Global Solar Radiation (GSR). In this study, perovskite-based solar cells with the configuration Au/SpiroOMETAD/MAPbI3/TiO2/FTO have been simulated using Solar Cell Capacitance Simulator (SCAPS). The power conversion efficiency (PCE) of the cell is found to be 22.67, 22.69, 22.77 and 22.80% in BRT, KTM, PKR and JML respectively, almost similar and better performance, whereas the solar cell performs better in JML due to the high solar irradiance.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 354
Author(s):  
Bok Jong Yoo ◽  
Chan Bae Park ◽  
Ju Lee

Background/Objectives: In designing the solar power generation, feasibility review and power generation volume prediction during guarantee phase after the completion are very important.Methods/Statistical analysis: The study compares the actual power generation volume obtained from solar power generation monitoring system and estimated volume calculated using overseas meteorological data from Meteonorm 7.1 and NASA-SSE and Korean data from the Korea Meteorological Administration, in order to understand their accuracy. The calculation using KMA data, with the highest prediction value, was used to analyze the correlation among solar radiation, temperature, and solar power generation volume.Findings: Previous solar power generation volume prediction was conducted only with solar radiation value, which caused errors between the actual and predicted solar power generation volume. The study found that the power generation volume and solar radiation have a high positive correlation coefficient of 0.8131 for Songam Power Plant. For correlation between power generation volume and temperature, the coefficient for Songam was 0.2843 and 0.4616 for Jipyeong Power Plant, showing lower influence than that of solar radiation. In sum, solar radiation influences the solar power generation volume more than temperature, but the current study indicates that both solar radiation and temperature must be considered for an accurate prediction of solar power generation volume.Improvements/Applications: Research to develop solar power generation volume prediction algorithm that takes into account both solar radiation and temperature must be conducted to expand the application of solar power generation system with more accurate estimation of power generation volume.  


2019 ◽  
Vol 20 (5) ◽  
pp. 23-34
Author(s):  
Alaa H. Shneishil ◽  
Emad J. Mahdi ◽  
Mohammed A. Hantosh

The present work aims at decrease the cost of the photovoltaic (PV) solar system by decreasing the area of expensive solar cells by low cost optical concentrators that give the same output power. Output power of two types’ monocrystalline and polycrystalline silicon solar cells has been measured with and without presence of linear focus Fresnel lenses (FL) with different concentration ratios. Cooling system has been used to decrease the effect of temperature on solar cell performance. The results indicated that the increase in the output power is about 5.3 times by using Fresnel lens concentrator without using cooling system in comparison with solar cell without concentrator, while it is about 14.6 times by using cooling system. The efficiency of monocrystalline solar cell without cooling system is about 11.2% for solar irradiance 0.698 kW/m2, this value decrease to 3.3% for solar irradiance 12.4 kW/m2 and concentration ratio 17.7 by using Fresnel lens concentrator, while when using cooling system the efficiency enhance to 12.9% and 8.8% for solar irradiance 0.698 and 12.4, respectively.


Sign in / Sign up

Export Citation Format

Share Document