SU-E-T-617: Commissioning the Eclipse Pencil Beam for Low Energy X-Rays

2013 ◽  
Vol 40 (6Part20) ◽  
pp. 347-347
Author(s):  
M Cherven ◽  
J Burmeister ◽  
J Rakowski ◽  
M Snyder
Keyword(s):  
Metrologia ◽  
2011 ◽  
Vol 48 (1A) ◽  
pp. 06013-06013 ◽  
Author(s):  
D T Burns ◽  
P Roger ◽  
M Denozière ◽  
E Leroy
Keyword(s):  
X Rays ◽  

2006 ◽  
Vol 49 (spe) ◽  
pp. 17-23 ◽  
Author(s):  
Carlos de Austerlitz ◽  
Viviane Souza ◽  
Heldio Pereira Villar ◽  
Aloisio Cordilha

The performance of four X-ray qualities generated in a Pantak X-ray machine operating at 30-100 kV was determined with a parallel-plate ionization chamber and a Fricke dosimeter. X-ray qualities used were those recommended by Deutsch Internationale Normung DIN 6809 and dose measurements were carried out with Plexiglas® simulators. Results have shown that the Fricke dosimeter can be used not only for soft X-ray dosimetry, but also for the maintenance of low-energy measuring systems' calibration factor.


2015 ◽  
Vol 296 ◽  
pp. 133-141 ◽  
Author(s):  
Omer Faruk Selamet ◽  
Phengxay Deevanhxay ◽  
Shohji Tsushima ◽  
Shuichiro Hirai
Keyword(s):  
X Rays ◽  

2016 ◽  
Vol 733 ◽  
pp. 012090
Author(s):  
N F Silva ◽  
M Xavier ◽  
V Vivolo ◽  
L V E Caldas

2014 ◽  
Vol 605 ◽  
pp. 540-543 ◽  
Author(s):  
Ruo Xi Wang ◽  
Patrick Pittet ◽  
Julien Ribouton ◽  
Guo Neng Lu ◽  
Jean Marc Galvan ◽  
...  

Solid-state dosimetry employs highly sensitive semiconductors such as Gallium Nitride (GaN) and Silicon (Si), but they have a common drawback of over response compared to tissues for low-energy scattered photons, which induces inacceptable errors for radiotherapy application. To tackle this issue, we propose a compensation method consisting in using two different materials of dosimetric interest with different atomic numbers. Their responses are denoted as SC1 and SC2. The response ratio SC1/water as a function of the ratio SC1/SC2 exhibits a monotonic curve that can serve as reference to compensate the over-response of SC1. To validate this method, we have studied the dosimetric response of GaN (0.1 mm3) and Si crystals (2.5 mm3) by simulations, using a validated model based on the general cavity theory in a homogeneous water phantom. The dosimetric response of GaN and Si calculated using the model has errors within 2.5% compared to measured data. The local fluence spectra have been obtained by convolution of pencil beam kernel built by Monte Carlo simulations for different clinical irradiation conditions with field size (from 5×5 cm2up to 20×20 cm2) at depth in the phantom (from 2 cm to 25 cm). The obtained results confirm a monotone relationship between GaN/water dose ratio and GaN/Si dose ratio. The reference curve is independent of irradiation conditions (field size, dosimeter position...), and allows determination of compensation value by identification.


1997 ◽  
Vol 50 (4) ◽  
pp. 745 ◽  
Author(s):  
S. M. Thurgate

Abstract In 1925 Pierre Auger reported on his observations of low energy electrons associated with core-ionised atoms in cloud chamber experiments. He was able to correctly identify the mechanism for their production, and such electrons are now known as Auger electrons. Typically Auger electrons have energies in the range 10 eV to 2 keV. The short distance that such low energy electrons travel in solids ensures that Auger electrons come from the surface layers. The data generated by the AES technique are complex. There are at least three electrons involved in the process, and there are many possible configurations for the atom. These possibilities led to spectra that are not readily interpreted in detail. Theory lags behind experiment in this area. In principle, it should be possible to find information about the chemical environment of atoms from Auger spectra. While there are clear changes in spectral lineshapes, there is no simple way to go from the spectra to an understanding of the chemical bonding of the atom. There are a number of experiments currently underway which aim to improve our understanding of the Auger process. Synchrotron experiments with tunable energy x-rays are providing new insight. Experiments that use positrons to excite Auger emission have also produced further recent understanding. Coincidence experiments between photoelectrons and Auger electrons have also made recent advances. Auger photoelectron coincidence spectroscopy reduces the complexity of Auger spectra by only counting those electrons that occur as a consequence of selected ionisations. The effect is to reduce the complexity of the spectra, and to isolate processes that are often clouded by the simultaneous occurrence of other effects.


Sign in / Sign up

Export Citation Format

Share Document