Chebyshev polynomials in the loaded‐string problem

1975 ◽  
Vol 43 (4) ◽  
pp. 361-362
Author(s):  
John H. Van Drie ◽  
Peter W. Murphy
Author(s):  
K. Werner ◽  
M. Raab

Embodied cognition theories suggest a link between bodily movements and cognitive functions. Given such a link, it is assumed that movement influences the two main stages of problem solving: creating a problem space and creating solutions. This study explores how specific the link between bodily movements and the problem-solving process is. Seventy-two participants were tested with variations of the two-string problem (Experiment 1) and the water-jar problem (Experiment 2), allowing for two possible solutions. In Experiment 1 participants were primed with arm-swing movements (swing group) and step movements on a chair (step group). In Experiment 2 participants sat in front of three jars with glass marbles and had to sort these marbles from the outer jars to the middle one (plus group) or vice versa (minus group). Results showed more swing-like solutions in the swing group and more step-like solutions in the step group, and more addition solutions in the plus group and more subtraction solutions in the minus group. This specificity of the connection between movement and problem-solving task will allow further experiments to investigate how bodily movements influence the stages of problem solving.


2010 ◽  
Vol 59 (10) ◽  
pp. 1392-1401 ◽  
Author(s):  
Xiaofeng Liao ◽  
Fei Chen ◽  
Kwok-wo Wong

Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 74
Author(s):  
Waleed Mohamed Abd-Elhameed ◽  
Afnan Ali

The main purpose of the current article is to develop new specific and general linearization formulas of some classes of Jacobi polynomials. The basic idea behind the derivation of these formulas is based on reducing the linearization coefficients which are represented in terms of the Kampé de Fériet function for some particular choices of the involved parameters. In some cases, the required reduction is performed with the aid of some standard reduction formulas for certain hypergeometric functions of unit argument, while, in other cases, the reduction cannot be done via standard formulas, so we resort to certain symbolic algebraic computation, and specifically the algorithms of Zeilberger, Petkovsek, and van Hoeij. Some new linearization formulas of ultraspherical polynomials and third-and fourth-kinds Chebyshev polynomials are established.


Author(s):  
Bernhard Heim ◽  
Markus Neuhauser

AbstractIn this paper we investigate growth properties and the zero distribution of polynomials attached to arithmetic functions g and h, where g is normalized, of moderate growth, and $$0<h(n) \le h(n+1)$$ 0 < h ( n ) ≤ h ( n + 1 ) . We put $$P_0^{g,h}(x)=1$$ P 0 g , h ( x ) = 1 and $$\begin{aligned} P_n^{g,h}(x) := \frac{x}{h(n)} \sum _{k=1}^{n} g(k) \, P_{n-k}^{g,h}(x). \end{aligned}$$ P n g , h ( x ) : = x h ( n ) ∑ k = 1 n g ( k ) P n - k g , h ( x ) . As an application we obtain the best known result on the domain of the non-vanishing of the Fourier coefficients of powers of the Dedekind $$\eta $$ η -function. Here, g is the sum of divisors and h the identity function. Kostant’s result on the representation of simple complex Lie algebras and Han’s results on the Nekrasov–Okounkov hook length formula are extended. The polynomials are related to reciprocals of Eisenstein series, Klein’s j-invariant, and Chebyshev polynomials of the second kind.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Di Han ◽  
Xingxing Lv

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Waleed M. Abd-Elhameed ◽  
Youssri H. Youssri

AbstractThe principal aim of the current article is to establish new formulas of Chebyshev polynomials of the sixth-kind. Two different approaches are followed to derive new connection formulas between these polynomials and some other orthogonal polynomials. The connection coefficients are expressed in terms of terminating hypergeometric functions of certain arguments; however, they can be reduced in some cases. New moment formulas of the sixth-kind Chebyshev polynomials are also established, and in virtue of such formulas, linearization formulas of these polynomials are developed.


2021 ◽  
pp. 105561
Author(s):  
Klaus Schiefermayr ◽  
Maxim Zinchenko

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Vivek Kumar Singh ◽  
Rama Mishra ◽  
P. Ramadevi

Abstract Weaving knots W(p, n) of type (p, n) denote an infinite family of hyperbolic knots which have not been addressed by the knot theorists as yet. Unlike the well known (p, n) torus knots, we do not have a closed-form expression for HOMFLY-PT and the colored HOMFLY-PT for W(p, n). In this paper, we confine to a hybrid generalization of W(3, n) which we denote as $$ {\hat{W}}_3 $$ W ̂ 3 (m, n) and obtain closed form expression for HOMFLY-PT using the Reshitikhin and Turaev method involving $$ \mathrm{\mathcal{R}} $$ ℛ -matrices. Further, we also compute [r]-colored HOMFLY-PT for W(3, n). Surprisingly, we observe that trace of the product of two dimensional $$ \hat{\mathrm{\mathcal{R}}} $$ ℛ ̂ -matrices can be written in terms of infinite family of Laurent polynomials $$ {\mathcal{V}}_{n,t}\left[q\right] $$ V n , t q whose absolute coefficients has interesting relation to the Fibonacci numbers $$ {\mathrm{\mathcal{F}}}_n $$ ℱ n . We also computed reformulated invariants and the BPS integers in the context of topological strings. From our analysis, we propose that certain refined BPS integers for weaving knot W(3, n) can be explicitly derived from the coefficients of Chebyshev polynomials of first kind.


Sign in / Sign up

Export Citation Format

Share Document