In‐line hedge trimmer with planetary gear drive and vibration damping blade assembly

1989 ◽  
Vol 86 (6) ◽  
pp. 2474-2474
Author(s):  
James R. Sistare
2011 ◽  
Vol 52-54 ◽  
pp. 1268-1273 ◽  
Author(s):  
Jian Kun Cui

A new mechanism construction for small tooth number difference planetary gear drive is developed in which the planet wheel is guided by a planar crank and oscillating block mechanism. The sizes of linkage are design dexterously to get an approximate circumference linkage curve so that the engaging condition of internal gear pair can be satisfied. The trajectory of the inner gear center motion is analyzed and its error comparing with a standard circle is calculated to avoid movement interference. The movement of inner gear is study particularly to deduced formula of instantaneous transmission ratio. Despite observable fluctuation of output speed, this new type of gear transmission mechanism still has potential application value in situation with large ratio and low input speed. A hand drive winch prototype using the mechanism is also illustrated in this paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
S. H. Gawande ◽  
S. N. Shaikh

Now a days reduction of gear noise and resulting vibrations has received much attention of the researchers. The internal excitation caused by the variation in tooth mesh stiffness is a key factor in causing vibration. Therefore to reduce gear noise and vibrations several techniques have been proposed in recent years. In this research the experimental work is carried out to study the effect of planet phasing on noise and subsequent resulting vibrations of Nylon-6 planetary gear drive. For this purpose experimental set-up was built and trials were conducted for two different arrangements (i.e., with phasing and without phasing) and it is observed that the noise level and resulting vibrations were reduced by planet phasing arrangement. So from the experimental results it is observed that by applying the meshing phase difference one can reduce planetary gear set noise and vibrations.


1973 ◽  
Vol 95 (4) ◽  
pp. 1123-1130 ◽  
Author(s):  
R. Kasuba ◽  
E. I. Radzimovsky

Feasibility of a multi-purpose testing machine for research studies in gearing has been demonstrated with construction of a unique gear testing machine with a differential planetary gear drive. This machine was used in such interdependent studies as determination of instantaneous gear tooth engagement loads, minimum film thicknesses, and gear efficiencies. With minimal structural and mechanical modifications, this gear research machine can be used for studies of surface durability, thermal distribution in gear meshing zones, and effects of variable torques and torsional oscillations on performance of gearing. Most of these studies could be conducted simultaneously. Upon selection of appropriate gear ratios, this machine was operated either with one or two stationary gears. Presence of stationary gears simplified greatly the measurement techniques and increased the reliability of tests. This machine can accommodate spur, helical or any special type of gearing. Design and operational characteristics of this machine, as well as a short summary of research projects performed on this machine, are presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document