scholarly journals Experimental Investigations of Noise Control in Planetary Gear Set by Phasing

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
S. H. Gawande ◽  
S. N. Shaikh

Now a days reduction of gear noise and resulting vibrations has received much attention of the researchers. The internal excitation caused by the variation in tooth mesh stiffness is a key factor in causing vibration. Therefore to reduce gear noise and vibrations several techniques have been proposed in recent years. In this research the experimental work is carried out to study the effect of planet phasing on noise and subsequent resulting vibrations of Nylon-6 planetary gear drive. For this purpose experimental set-up was built and trials were conducted for two different arrangements (i.e., with phasing and without phasing) and it is observed that the noise level and resulting vibrations were reduced by planet phasing arrangement. So from the experimental results it is observed that by applying the meshing phase difference one can reduce planetary gear set noise and vibrations.

Author(s):  
Kazuteru Nagamura ◽  
Kiyotaka Ikejo ◽  
Eiichirou Tanaka ◽  
Takamasa Hirai ◽  
Toshiyuki Koumori ◽  
...  

This paper describes a new type planetary gear drive with the high reduction ratio. The planetary gear drive is mechanically similar to a 2S-C type planetary gear, which has two sun gears and one carrier. The planetary gear drive has two pairs of an arc tooth profile gear and a pin roller, which mesh each other. The planetary gear drive has little backlash, a high efficiency, a long fatigue limit, etc., because the tooth contact holds on concave and convex surfaces. In this study, we measured the vibration acceleration, the transmission error, the gear noise, and the efficiency on the new type planetary gear drive by the running test. We discuss and report the driving performance of the planetary gear drive.


2014 ◽  
Vol 672-674 ◽  
pp. 251-254
Author(s):  
Kai Xu ◽  
Ping Jia ◽  
Ming Qiu ◽  
Jian Jun Yang

By the disadvantage of the speed fluctuations to the gear noise and vibration spectrum in time domain, a new method to measuring the periodic signal was put forward in pulse time domain. The multi-channel simultaneous measurement model were brought out, aimed at analyzing the gear meshing state and its frequency characteristics. Then, the 14 DOF nonlinear vibration equations was derived from kinetic analysis on the planetary gear pair meshing model, which was solved and simulated in Matlab software, containing with transmission error, time-varying mesh stiffness, clearance and other factors. Finally, an integrated platform was constructed for measuring gear noise, vibration and transmission error to verify the effectiveness and feasibility of the analytical.


2014 ◽  
Vol 668-669 ◽  
pp. 160-163 ◽  
Author(s):  
Kai Xu ◽  
Ping Jia ◽  
Ming Qiu ◽  
Jian Jun Yang

The paper defines the transmission errors of planetary gear trains, derives from kinetic tooth contact analysis. The method to calculate transmission errors of planetary gear trains is put forward. An integrated platform was constructed for measuring gear noise, vibration and transmission error to verify the effectiveness and feasibility of the analytical. Finally, experimental investigations of the gear noise and vibration spectrum in time domain are introduced, which was solved and simulated in Matlab software.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Wei Luo ◽  
Baijie Qiao ◽  
Zhixian Shen ◽  
Zhibo Yang ◽  
Hongrui Cao ◽  
...  

Abstract Acting as an important internal excitation, sliding friction can cause the vibration and noise of the planetary gear set. In this paper, a dynamic model is developed to study the influence of sliding friction on the dynamic characteristics of the planetary gear set by including the time-varying mesh stiffness (TVMS), sliding friction forces and torques. An improved analytical model is proposed to calculate the TVMS with sliding friction. The explicit analytical expressions of the sliding friction forces and torques are also derived. Three kinds of different models are applied to investigate the influence of sliding friction: (1) the basic model: sliding friction is neglected in the dynamic model; (2) the improved model I: only the sliding friction forces and torques are considered in the dynamic model; and (3) the improved model II: both the influence of sliding friction on the TVMS and the sliding friction forces and torques are introduced into the dynamic model. The planetary gear set with three equally spaced planet gears is applied to analyze the dynamic characteristics under sliding friction. The simulation results show that the dynamic characteristics can be enhanced or disturbed by sliding friction. In the end, the dynamic model is validated by the experiments. Therefore, the influence of sliding friction is non-negligible when investigating the dynamic characteristics of the planetary gear set. The developed dynamic model provides a feasible dynamic research scheme for the planetary gear set with sliding friction.


2020 ◽  
pp. 51-58
Author(s):  
Aleksandr I. Kazmin ◽  
Pavel A. Fedjunin

One of the most important diagnostic problems multilayer dielectric materials and coatings is the development of methods for quantitative interpretation of the checkout results their electrophysical and geometric parameters. The results of a study of the potential informativeness of the multi-frequency radio wave method of surface electromagnetic waves during reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings are presented. The simulation model is presented that makes it possible to evaluate of the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings. The model takes into account the values of the electrophysical and geometric parameters of the coating, the noise level in the measurement data and the measurement bandwidth. The results of simulation and experimental investigations of reconstruction of the structure of relative permittivitties and thicknesses of single-layer and double-layer dielectric coatings with different thicknesses, with different values of the standard deviation (RMS) of the noise level in the measured attenuation coefficients of the surface slow electromagnetic wave are presented. Coatings based on the following materials were investigated: polymethyl methacrylate, F-4D PTFE, RO3010. The accuracy of reconstruction of the electrophysical parameters of the layers decreases with an increase in the number of evaluated parameters and an increase in the noise level. The accuracy of the estimates of the electrophysical parameters of the layers also decreases with a decrease in their relative permittivity and thickness. The results of experimental studies confirm the adequacy of the developed simulation model. The presented model allows for a specific measuring complex that implements the multi-frequency radio wave method of surface electromagnetic waves, to quantify the potential possibilities for the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric materials and coatings. Experimental investigations and simulation results of a multilayer dielectric coating demonstrated the theoretical capabilities gained relative error permittivity and thickness of the individual layers with relative error not greater than 10 %, with a measurement bandwidth of 1 GHz and RMS of noise level 0,003–0,004.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 591
Author(s):  
Irene Castañeda ◽  
Elsa Bonnaud ◽  
Franck Courchamp ◽  
Gloria Luque

As a critical stage in the life cycle of ant colonies, nest establishment depends on external and internal factors. This study investigates the effect of the number of queens on queen and worker behavior during nest establishment in invasive Argentine ants (Linepitema humile) and native Mediterranean Tapinoma nigerrimum. We set up experimental colonies with the same number of workers but with one or six queens. At different time points, we recorded the positions of queens and workers inside and outside the nest. Our results highlight the influence of the number of queens on the position of queens and workers with between-species differences. Queens of both species entered the nests more quickly when there were six queens. During nest establishment, more workers were inside nests with six queens for both species, with this effect being greater for T. nigerrimum. Once nests were established, fewer workers of both species were engaged in nest maintenance and feeding in nests with six queens; T. nigerrimum had fewer workers engaged in patrolling. These results suggest that the number of queens is a key factor driving queen and worker behavior during and after nest establishment with different species responses.


Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2077
Author(s):  
Oliver Zeman ◽  
Michael Schwenn ◽  
Martin Granig ◽  
Konrad Bergmeister

The assessment of already installed anchorages for a possible exceeding of the service load level is a question that is gaining more and more importance, especially in building maintenance. Bonded anchors are of particular interest here, as the detection of a capacity reduction or load exceedance can cause damage to the concrete-bonded mortar behavior. This article investigates the extent to which ultrasonic methods can be used to make a prediction about the condition of anchorages in concrete and about their load history. A promising innovative assessment method has been developed. The challenges in carrying out the experimental investigations are the arrangement of the transducers, the design of the test set-up and the applicability of direct, indirect or semidirect ultrasonic transmission. The experimental investigations carried out on a test concrete mix and a bonded anchor system show that damage to the concrete structure can be detected by means of ultrasound. The results indicate the formation of cracks and therefore a weakening of the response determined by means of direct, indirect and semidirect ultrasonic transmission. However, for application under non-laboratory conditions and on anchors with unknown load history, the calibration with a reference anchor and the identification of the maximum load is required. This enables a referencing of the other loaded anchors to the unloaded conditions and allows an estimation of the load history of individual anchors.


2021 ◽  
pp. 004051752110371
Author(s):  
Yanhong Yuan ◽  
Jie Zhong ◽  
Xin Ru ◽  
Bing Liu

The yarn feeding for a loop formation is a critical factor in determining the size and elasticity of highly elastic knitted fabrics. Currently, the prevalent production processes rely on experienced machine operators to set up the optimal feed rate by trial and error. To improve production efficiency and reduce the reliance on the operator’s skill, we attempt to create a structure model of tubular knitted fabric that could correlate the size as well as elasticity of fabric with the loop geometry parameters (wale spacing, course spacing) of the yarn feeding. The experimental tensile test of the elastic fabric verified that the model is able to deduce the yarn feeding parameters from the elasticity and dimensional requirements of the fabric to be knitted. It is also illustrated that the yarn feeding is a key factor in controlling the elasticity of knitted fabrics.


2012 ◽  
Vol 516 ◽  
pp. 469-474
Author(s):  
Yuta Morimoto ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Yasuhiro Uenishi

Recently, technology for electric vehicles (EV) and hybrid vehicles (HEV) has been focused on by the automotive industry to address environmental problems including CO2 reduction [. In particular, in HEV, planetary gears are used to control differential rotation of the motor, engine and generator. For these vehicles, the noise level inside the vehicle is low because the motor is used as the main power source. As a result, further decrease of gear noise is desired compared with the conventional planetary gear mechanism. However, research into the gear noise of the planetary gear mechanism is extremely scarce. Therefore, in this study, we focus on the three axes of I/O rotation, and a new method of measuring the meshing force of the planetary gear mechanism. In this report, a gear-driving device, which is able to make 3-axis differential rotation, was designed for experimentation.


Sign in / Sign up

Export Citation Format

Share Document