DESIGN AND ANALYSIS OF A THREE-STAGE CYCLOIDAL PLANETARY GEAR DRIVE FOR HIGH REDUCTION RATIO

Author(s):  
Shyi-Jeng TSAI ◽  
Ling-Chiao CHANG ◽  
Chin-Hao HUANG
2013 ◽  
Vol 319 ◽  
pp. 610-615 ◽  
Author(s):  
Long Chang Hsieh ◽  
Hsiu Chen Tang

The power system equipped in machinery contains power source (motor or engine) and gear reducer to get large output torque. The rotation speed of motor is made higher and higher to obtain high power with the same volume. Hence, the reduction ratio of gear reducer is required to be higher and higher. Planetary gear trains can be used as the gear reducers with high reduction ratio. However, the planetary gear train with high reduction ratio is compound gear system. The purpose of this paper is to propose 2K-2H type planetary gear reducers with high reduction ratio. Based on the concept of train value equation, we propose a new representation to present the kinematic relationship of the members of the train circuit. According to this representation graph, we propose an algorithm for the kinematic design of planetary simple gear trains with high reduction ratio. Some 2K-2H type planetary gear reducers are designed to illustrate the design algorithm.


2007 ◽  
Vol 2007 (0) ◽  
pp. 103-106
Author(s):  
Kazuteru NAGAMURA ◽  
Kiyotaka IKEJO ◽  
Eiichirou TANAKA ◽  
Toshiyuki KOUMORI ◽  
Takamasa HIRAI ◽  
...  

Author(s):  
Kazuteru Nagamura ◽  
Kiyotaka Ikejo ◽  
Eiichirou Tanaka ◽  
Takamasa Hirai ◽  
Toshiyuki Koumori ◽  
...  

This paper describes a new type planetary gear drive with the high reduction ratio. The planetary gear drive is mechanically similar to a 2S-C type planetary gear, which has two sun gears and one carrier. The planetary gear drive has two pairs of an arc tooth profile gear and a pin roller, which mesh each other. The planetary gear drive has little backlash, a high efficiency, a long fatigue limit, etc., because the tooth contact holds on concave and convex surfaces. In this study, we measured the vibration acceleration, the transmission error, the gear noise, and the efficiency on the new type planetary gear drive by the running test. We discuss and report the driving performance of the planetary gear drive.


2006 ◽  
Vol 505-507 ◽  
pp. 1003-1008 ◽  
Author(s):  
Long Chang Hsieh ◽  
Hsin Sheng Lee ◽  
Teu Hsia Chen

Planetary gear trains can be used as the transmission systems with high reduction ratio for power machinery. The purpose of this paper is to propose an algorithm for the kinematic design of planetary gear trains with high reduction ratio. Based on the concept of train value equation, we propose a new representation to present the kinematic relationship of the members of the train loop. According to this representation graph, we propose an efficient algorithm for the kinematic design of planetary gear trains with high reduction ratio. Three design examples are designed to illustrate the design algorithm. Based on the proposed algorithm, all planetary gear trains with high reduction ratio can be synthesized.


2014 ◽  
Vol 575 ◽  
pp. 395-399
Author(s):  
Long Chang Hsieh ◽  
Teu Hsia Chen ◽  
Hsiu Chen Tang

Planetary gear trains can be used as the gear reducers with high reduction ratio. This paper focused on the kinematic and meshing efficiency analysis of planetary simple gear reducer with two ring gears. First, the planetary simple gear train with two ring gears is proposed by using different shift coefficients. Then, by referring to the train value equation, the reduction-ratio equation is derived for the design the planetary gear reducer with two ring gears. According to reduction-ratio equation, the planetary gear reducers with two ring gears and having reduction ratios (20, 50, and 100) are synthesized. Then, based on the latent power theorem, the meshing efficiency equation of planetary gear train with two ring gears is derived. According to the meshing efficiency equation, the meshing efficiencies of planetary gear trains with two ring gears are analyzed. In this paper, we conclude: (1) Larger reduction ratio makes less meshing efficiency, and (2) The meshing efficiency of planetary gear reducer with two ring gears is not good.


Author(s):  
S Bekircan

This paper presents some of the general practical problems involved in the design of a high-reduction compound planetary gear drive and examines such a drive for high speed ratio, power circulation and efficiency. The performance of the drive with respect to efficiency of 50–60 per cent has been obtained under various running conditions such as speed, load and temperature. An attempt was also made to balance internal forces in order to increase efficiency. At first sight, the number of factors involved appears to make it impossible for a general analysis of the problem to be made, but broad conclusions have been drawn.


2013 ◽  
Vol 421 ◽  
pp. 40-45 ◽  
Author(s):  
Long Chang Hsieh ◽  
Hsiu Chen Tang ◽  
Tzu Hsia Chen ◽  
Jhen Hao Gao

3K type and 2K-2H type planetary gear trains can be designed to have high reduction ratios. Due to the reason of power circulation, these two kinds of planetary gear trains with high reduction ratios have low meshing efficiencies. The 2K type planetary gear reducer only contain two ring gears and one carrier, hence it will not have the problem of power circulation and will have better meshing efficiency than 3K type and 2K-2H type planetary gear reducers. Also, in general, the gear reducers with high reduction ratio are compound gear system. The purpose of this paper is to propose 2K type planetary simple gear reducers with high reduction ratios. Based on the concept of train value equation, the kinematic design of 2K type planetary gear trains with high reduction ratio are synthesized. Six 2K type planetary gear reducers are designed to illustrate the kinematic design process. Three of the examples are 2K type planetary gear reducers with simple planet gears. For the 2K type planetary simple gear reducer, there is a problem that is the simple planet gear engages to two ring gears with different tooth number. One example is used to illustrate how to design the two ring gears with different shift coefficient to engage the same planet gear. Based on the proposed process, all 2K type planetary simple gear reducers with high reduction ratios can be synthesized.


Sign in / Sign up

Export Citation Format

Share Document