Linear and nonlinear acoustic Bloch wave propagation in periodic waveguides

1994 ◽  
Vol 96 (6) ◽  
pp. 3812-3812
Author(s):  
Charles E. Bradley
2017 ◽  
Vol 142 (6) ◽  
pp. 3402-3415 ◽  
Author(s):  
Petr V. Yuldashev ◽  
Sébastien Ollivier ◽  
Maria M. Karzova ◽  
Vera A. Khokhlova ◽  
Philippe Blanc-Benon

Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 66
Author(s):  
Connor D. Pierce ◽  
Kathryn H. Matlack

Phononic crystals (PCs) have been widely reported to exhibit band gaps, which for non-dissipative systems are well defined from the dispersion relation as a frequency range in which no propagating (i.e., non-decaying) wave modes exist. However, the notion of a band gap is less clear in dissipative systems, as all wave modes exhibit attenuation. Various measures have been proposed to quantify the “evanescence” of frequency ranges and/or wave propagation directions, but these measures are not based on measurable physical quantities. Furthermore, in finite systems created by truncating a PC, wave propagation is strongly attenuated but not completely forbidden, and a quantitative measure that predicts wave transmission in a finite PC from the infinite dispersion relation is elusive. In this paper, we propose an “evanescence indicator” for PCs with 1D periodicity that relates the decay component of the Bloch wavevector to the transmitted wave amplitude through a finite PC. When plotted over a frequency range of interest, this indicator reveals frequency regions of strongly attenuated wave propagation, which are dubbed “fuzzy band gaps” due to the smooth (rather than abrupt) transition between evanescent and propagating wave characteristics. The indicator is capable of identifying polarized fuzzy band gaps, including fuzzy band gaps which exists with respect to “hybrid” polarizations which consist of multiple simultaneous polarizations. We validate the indicator using simulations and experiments of wave transmission through highly viscoelastic and finite phononic crystals.


Sign in / Sign up

Export Citation Format

Share Document