scholarly journals “Fuzzy Band Gaps”: A Physically Motivated Indicator of Bloch Wave Evanescence in Phononic Systems

Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 66
Author(s):  
Connor D. Pierce ◽  
Kathryn H. Matlack

Phononic crystals (PCs) have been widely reported to exhibit band gaps, which for non-dissipative systems are well defined from the dispersion relation as a frequency range in which no propagating (i.e., non-decaying) wave modes exist. However, the notion of a band gap is less clear in dissipative systems, as all wave modes exhibit attenuation. Various measures have been proposed to quantify the “evanescence” of frequency ranges and/or wave propagation directions, but these measures are not based on measurable physical quantities. Furthermore, in finite systems created by truncating a PC, wave propagation is strongly attenuated but not completely forbidden, and a quantitative measure that predicts wave transmission in a finite PC from the infinite dispersion relation is elusive. In this paper, we propose an “evanescence indicator” for PCs with 1D periodicity that relates the decay component of the Bloch wavevector to the transmitted wave amplitude through a finite PC. When plotted over a frequency range of interest, this indicator reveals frequency regions of strongly attenuated wave propagation, which are dubbed “fuzzy band gaps” due to the smooth (rather than abrupt) transition between evanescent and propagating wave characteristics. The indicator is capable of identifying polarized fuzzy band gaps, including fuzzy band gaps which exists with respect to “hybrid” polarizations which consist of multiple simultaneous polarizations. We validate the indicator using simulations and experiments of wave transmission through highly viscoelastic and finite phononic crystals.

2021 ◽  
pp. 1-34
Author(s):  
Shaowu Ning ◽  
Dongyang Chu ◽  
Fengyuan Yang ◽  
Heng Jiang ◽  
Zhanli Liu ◽  
...  

Abstract The characteristics of passive responses and fixed band gaps of phononic crystals (PnCs) limit their possible applications. For overcoming this shortcoming, a class of tunable PnCs comprised of multiple scatterers and soft periodic porous elastomeric matrices are designed to manipulate the band structures and directionality of wave propagation through the applied deformation. During deformation, some tunable factors such as the coupling effect of scatterer and hole in the matrix, geometric and material nonlinearities, and the rearrangement of scatterer are activated by deformation to tune the dynamic responses of PnCs. The roles of these tunable factors in the manipulation of dynamic responses of PnCs are investigated in detail. The numerical results indicate that the tunability of the dynamic characteristic of PnCs is the result of the comprehensive function of these tunable factors mentioned above. The strong coupling effect between the hole in the matrix and the scatterer contributes to the formation of band gaps. The geometric nonlinearity of matrix and rearrangement of scatterer induced by deformation can simultaneously tune the band gaps and the directionality of wave propagation. However, the matrix's material nonlinearity only adjusts the band gaps of PnCs and does not affect the directionality of wave propagation in them. The research extends our understanding of the formation mechanism of band gaps of PnCs and provides an excellent opportunity for the design of the optimized tunable PnCs and acoustic metamaterials.


2019 ◽  
Vol 27 (02) ◽  
pp. 1850026 ◽  
Author(s):  
Jiangwei Liu ◽  
Dianlong Yu ◽  
Jihong Wen ◽  
Zhenfang Zhang

Existing research shows that acoustic BG in a certain frequency range can be realized by installing an expansion chamber on duct system, but the problems of broadband and size limitations at low frequencies remain to be researched. The study of acoustic and elastic wave propagation in artificial periodic structures has received increasing attention for many decades, and the presence of bandgap (BG) in phononic crystals (PCs), which inhibits elastic/acoustic wave propagation within the BG’ frequency range, supplies a new way to control noise and vibrations in duct system. Based on PC theory, a duct silencer backed with a gas–liquid expansion chamber is proposed to enhance the acoustic performance of low-frequency noise attenuation. The transfer matrix method (TMM) is used to investigate the acoustic BG properties. The influences on the BG properties of some key parameters are analyzed, and the band formation mechanism is revealed by the law of energy conservation. The results show that silencers with a small size can effectively attenuate ultra-low frequencies and ultra-broad bands.


Soft Matter ◽  
2019 ◽  
Vol 15 (14) ◽  
pp. 2921-2927 ◽  
Author(s):  
Nan Gao ◽  
Jian Li ◽  
Rong-hao Bao ◽  
Wei-qiu Chen

In this work, we investigate the effect of regulation of uniaxial tension on the band gaps in 2D soft phononic crystal with criss-crossed elliptical holes via experiments.


2013 ◽  
Vol 1508 ◽  
Author(s):  
Ankit Srivastava ◽  
Sia Nemat-Nasser

ABSTRACTCentral to the idea of metamaterials is the concept of dynamic homogenization which seeks to define frequency dependent effective properties for Bloch wave propagation. Recent advances in the theory of dynamic homogenization have established the coupled form of the constitutive relation (Willis constitutive relation). This coupled form of the constitutive relation naturally emerges from ensemble averaging of the dynamic fields and automatically satisfies the dispersion relation in the case of periodic composites. Its importance is also notable due to its invariance under transformational acoustics. Here we discuss the explicit form of the effective dynamic constitutive equations. We elaborate upon the existence and emergence of coupling in the dynamic constitutive relation and further symmetries of the effective tensors.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
V. Romero-García ◽  
R. Picó ◽  
A. Cebrecos ◽  
K. Staliunas ◽  
V. J. Sánchez-Morcillo

Phononic crystals are artificial materials made of a periodic distribution of solid scatterers embedded into a solid host medium with different physical properties. An interesting case of phononic crystals, known as sonic crystals (SCs), appears when the solid scatterers are periodically embedded in a fluid medium. In SCs only longitudinal modes are allowed to propagate and both the theoretical and the experimental studies of the properties of the system are simplified without loss of generality. The most celebrated property of these systems is perhaps the existence of spectral band gaps. However, the periodicity of the system can also affect to the spatial dispersion, making possible the control of the diffraction inside these structures. In this work we study the main features of the spatial dispersion in SCs from a novel point of view taking into account the evanescent properties of the system, i.e., studying the complex spatial dispersion relations. The evanescent behavior of the propagation of waves in the angular band gaps are theoretically and experimentally observed in this work. Both the numerical predictions and the experimental results show the presence of angular band gaps in good agreement with the complex spatial dispersion relation. The results shown in this work are independent of the spatial scale of the structure, and in principle the fundamental role of the evanescent waves could be also expected in micro- or nanoscale phononic crystals.


2015 ◽  
Vol 29 (23) ◽  
pp. 1550134 ◽  
Author(s):  
Nansha Gao ◽  
Jiu Hui Wu ◽  
Li Jing

In this paper, we study the band gaps (BGs) of the two-dimensional (2D) Sierpinski fractal phononic crystals (SFPGs) embedded in the homogenous matrix. The BGs structure, transmission spectra and displacement fields of eigenmodes of the proposed structures are calculated by using finite element method (FEM). Due to the simultaneous mechanisms of the Bragg scattering, the structure can exhibit low-frequency BGs, which can be effectively shifted by changing the inclusion rotation angle. The initial stress values can compress the BGs is proposed for the first time. Through the calculation, it is shown that, in the 2D solid–solid SFPG, the multi-frequency BGs exist. The whole BGs would incline to the low-frequency range with the increase of the fractal dimension. The SFPGs with different shape inclusions, can modulate the number, width and location of BGs. The study in this paper is relevant to the design of tuning BGs and isolators in the low-frequency range.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Mao Liu ◽  
Pei Li ◽  
Yongteng Zhong ◽  
Jiawei Xiang

A new two-dimensional locally resonant phononic crystal with microcavity structure is proposed. The acoustic wave band gap characteristics of this new structure are studied using finite element method. At the same time, the corresponding displacement eigenmodes of the band edges of the lowest band gap and the transmission spectrum are calculated. The results proved that phononic crystals with microcavity structure exhibited complete band gaps in low-frequency range. The eigenfrequency of the lower edge of the first gap is lower than no microcavity structure. However, for no microcavity structure type of quadrilateral phononic crystal plate, the second band gap disappeared and the frequency range of the first band gap is relatively narrow. The main reason for appearing low-frequency band gaps is that the proposed phononic crystal introduced the local resonant microcavity structure. This study provides a good support for engineering application such as low-frequency vibration attenuation and noise control.


Sign in / Sign up

Export Citation Format

Share Document