One-Dimensional Localization and Wave Propagation in Linear and Nonlinear Media

Author(s):  
S. A. Gredeskul ◽  
L. A. Pastur
2018 ◽  
Vol 3 (2) ◽  
pp. 409-418 ◽  
Author(s):  
Chaudry Masood Khalique ◽  
Oke Davies Adeyemo ◽  
Innocent Simbanefayi

AbstractIn this paper we study the modified equal-width equation, which is used in handling simulation of a single dimensional wave propagation in nonlinear media with dispersion processes. Lie point symmetries of this equation are computed and used to construct an optimal system of one-dimensional subalgebras. Thereafter using an optimal system of one-dimensional subalgebras, symmetry reductions and new group-invariant solutions are presented. The solutions obtained are cnoidal and snoidal waves. Furthermore, conservation laws for the modified equal-width equation are derived by employing two different methods, the multiplier method and Noether approach.


1981 ◽  
Vol 48 (4) ◽  
pp. 743-748 ◽  
Author(s):  
T. C. T. Ting

Characteristic forms of differential equations for wave propagation in nonlinear media are derived directly from equations of motion and equations which combine the constitutive equations and the equations of continuity. Both Lagrangian coordinates and Eulerian coordinates are considered. The constitutive equations considered here apply to a large class of nonlinear materials. The characteristic forms derived here clearly show which components of the stress and velocity are involved in the differentiation along the bicharacteristics. Moreover, the reduction to one-dimensional cases from three-dimensional problems is obvious for the characteristic forms obtained here. Examples are given and compared with the known solution in the literature for wave propagation in linear isotropic elastic solids and isentropic compressible fluids.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yaroslava E. Poroshyna ◽  
Aleksander I. Lopato ◽  
Pavel S. Utkin

Abstract The paper contributes to the clarification of the mechanism of one-dimensional pulsating detonation wave propagation for the transition regime with two-scale pulsations. For this purpose, a novel numerical algorithm has been developed for the numerical investigation of the gaseous pulsating detonation wave using the two-stage model of kinetics of chemical reactions in the shock-attached frame. The influence of grid resolution, approximation order and the type of rear boundary conditions on the solution has been studied for four main regimes of detonation wave propagation for this model. Comparison of dynamics of pulsations with results of other authors has been carried out.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 443-452
Author(s):  
Tianshu Jiang ◽  
Anan Fang ◽  
Zhao-Qing Zhang ◽  
Che Ting Chan

AbstractIt has been shown recently that the backscattering of wave propagation in one-dimensional disordered media can be entirely suppressed for normal incidence by adding sample-specific gain and loss components to the medium. Here, we study the Anderson localization behaviors of electromagnetic waves in such gain-loss balanced random non-Hermitian systems when the waves are obliquely incident on the random media. We also study the case of normal incidence when the sample-specific gain-loss profile is slightly altered so that the Anderson localization occurs. Our results show that the Anderson localization in the non-Hermitian system behaves differently from random Hermitian systems in which the backscattering is suppressed.


2021 ◽  
pp. 875529302098198
Author(s):  
Muhammad Aaqib ◽  
Duhee Park ◽  
Muhammad Bilal Adeel ◽  
Youssef M A Hashash ◽  
Okan Ilhan

A new simulation-based site amplification model for shallow sites with thickness less than 30 m in Korea is developed. The site amplification model consists of linear and nonlinear components that are developed from one-dimensional linear and nonlinear site response analyses. A suite of measured shear wave velocity profiles is used to develop corresponding randomized profiles. A VS30 scaled linear amplification model and a model dependent on both VS30 and site period are developed. The proposed linear models compare well with the amplification equations developed for the western United States (WUS) at short periods but show a distinct curved bump between 0.1 and 0.5 s that corresponds to the range of site natural periods of shallow sites. The response at periods longer than 0.5 s is demonstrated to be lower than those of the WUS models. The functional form widely used in both WUS and central and eastern North America (CENA), for the nonlinear component of the site amplification model, is employed in this study. The slope of the proposed nonlinear component with respect to the input motion intensity is demonstrated to be higher than those of both the WUS and CENA models, particularly for soft sites with VS30 < 300 m/s and at periods shorter than 0.2 s. The nonlinear component deviates from the models for generic sites even at low ground motion intensities. The comparisons highlight the uniqueness of the amplification characteristics of shallow sites that a generic site amplification model is unable to capture.


Sign in / Sign up

Export Citation Format

Share Document