Effects of low‐frequency underwater sound on hair cells of the inner ear and lateral line of the teleost fish Astronotus ocellatus

1996 ◽  
Vol 99 (3) ◽  
pp. 1759-1766 ◽  
Author(s):  
Mardi C. Hastings ◽  
Arthur N. Popper ◽  
James J. Finneran ◽  
Pamela J. Lanford
1996 ◽  
Vol 99 (4) ◽  
pp. 2576-2603
Author(s):  
Mardi C. Hastings ◽  
Arthur N. Popper ◽  
James J. Finneran ◽  
Pamela J. Lanford

2014 ◽  
Vol 1 (2) ◽  
pp. 140166 ◽  
Author(s):  
Kathrin Kugler ◽  
Lutz Wiegrebe ◽  
Benedikt Grothe ◽  
Manfred Kössl ◽  
Robert Gürkov ◽  
...  

Noise-induced hearing loss is one of the most common auditory pathologies, resulting from overstimulation of the human cochlea, an exquisitely sensitive micromechanical device. At very low frequencies (less than 250 Hz), however, the sensitivity of human hearing, and therefore the perceived loudness is poor. The perceived loudness is mediated by the inner hair cells of the cochlea which are driven very inadequately at low frequencies. To assess the impact of low-frequency (LF) sound, we exploited a by-product of the active amplification of sound outer hair cells (OHCs) perform, so-called spontaneous otoacoustic emissions. These are faint sounds produced by the inner ear that can be used to detect changes of cochlear physiology. We show that a short exposure to perceptually unobtrusive, LF sounds significantly affects OHCs: a 90 s, 80 dB(A) LF sound induced slow, concordant and positively correlated frequency and level oscillations of spontaneous otoacoustic emissions that lasted for about 2 min after LF sound offset. LF sounds, contrary to their unobtrusive perception, strongly stimulate the human cochlea and affect amplification processes in the most sensitive and important frequency range of human hearing.


1987 ◽  
Vol 133 (1) ◽  
pp. 249-262 ◽  
Author(s):  
HANS ERIK KARLSEN ◽  
OLAV SAND

Fish possess two separate systems for detection of low-level sound and water motions in the low-frequency range: the inner ear and the lateral line. The relative roles of these systems in normal fish behaviour is still not clear. There is, for instance, a lack of experimental evidence showing the involvement of the lateral line and the inner ear in detection of infrasound, in directional hearing in the near field, and in detection and attack of swimming prey below the surface. To provide a useful tool for such studies, we have developed a pharmacological method for selective and reversible blocking of the lateral line in the roach (Rutilus rutilus). By recording multi-unit activity from the lateral line nerve and microphonic potentials from the inner ear, we have shown that cobalt ions in the external water may completely block the mechanosensitivity of the lateral line without affecting the utricular microphonic activity. This inhibiting effect of Co2+ is antagonized by Ca2+, making the ratio between these ions the important blocking factor. For practical work, we recommend 12–24h exposure to 0.1 mmol 1−1 Co2+ at a Ca2+ concentration of less than 0.1 mmol 1−1. The fish showed no sign of general behavioural disorders even after 1 week in this solution, and the microphonic sensitivity of the inner ear was not reduced. The blocking effect of Co2+ was clearly reversible, and the recovery was dependent upon both the duration of the Co2+ exposure and the Ca2+ concentration of the recovery solution.


2021 ◽  
Vol 14 ◽  
Author(s):  
Mark E. Warchol ◽  
Angela Schrader ◽  
Lavinia Sheets

The sensory organs of the inner ear contain resident populations of macrophages, which are recruited to sites of cellular injury. Such macrophages are known to phagocytose the debris of dying cells but the full role of macrophages in otic pathology is not understood. Lateral line neuromasts of zebrafish contain hair cells that are nearly identical to those in the inner ear, and the optical clarity of larval zebrafish permits direct imaging of cellular interactions. In this study, we used larval zebrafish to characterize the response of macrophages to ototoxic injury of lateral line hair cells. Macrophages migrated into neuromasts within 20 min of exposure to the ototoxic antibiotic neomycin. The number of macrophages in the near vicinity of injured neuromasts was similar to that observed near uninjured neuromasts, suggesting that this early inflammatory response was mediated by “local” macrophages. Upon entering injured neuromasts, macrophages actively phagocytosed hair cell debris. The injury-evoked migration of macrophages was significantly reduced by inhibition of Src-family kinases. Using chemical-genetic ablation of macrophages before the ototoxic injury, we also examined whether macrophages were essential for the initiation of hair cell regeneration. Results revealed only minor differences in hair cell recovery in macrophage-depleted vs. control fish, suggesting that macrophages are not essential for the regeneration of lateral line hair cells.


2021 ◽  
Vol 15 ◽  
Author(s):  
Erin Jimenez ◽  
Claire C. Slevin ◽  
Luis Colón-Cruz ◽  
Shawn M. Burgess

Millions of Americans experience hearing or balance disorders due to loss of hair cells in the inner ear. The hair cells are mechanosensory receptors used in the auditory and vestibular organs of all vertebrates as well as the lateral line systems of aquatic vertebrates. In zebrafish and other non-mammalian vertebrates, hair cells turnover during homeostasis and regenerate completely after being destroyed or damaged by acoustic or chemical exposure. However, in mammals, destroying or damaging hair cells results in permanent impairments to hearing or balance. We sought an improved method for studying hair cell damage and regeneration in adult aquatic vertebrates by generating a transgenic zebrafish with the capacity for targeted and inducible hair cell ablation in vivo. This model expresses the human diphtheria toxin receptor (hDTR) gene under the control of the myo6b promoter, resulting in hDTR expressed only in hair cells. Cell ablation is achieved by an intraperitoneal injection of diphtheria toxin (DT) in adult zebrafish or DT dissolved in the water for larvae. In the lateral line of 5 days post fertilization (dpf) zebrafish, ablation of hair cells by DT treatment occurred within 2 days in a dose-dependent manner. Similarly, in adult utricles and saccules, a single intraperitoneal injection of 0.05 ng DT caused complete loss of hair cells in the utricle and saccule by 5 days post-injection. Full hair cell regeneration was observed for the lateral line and the inner ear tissues. This study introduces a new method for efficient conditional hair cell ablation in adult zebrafish inner ear sensory epithelia (utricles and saccules) and demonstrates that zebrafish hair cells will regenerate in vivo after this treatment.


1992 ◽  
Vol 171 (1) ◽  
pp. 163-172 ◽  
Author(s):  
HANSERIK KARLSEN

In a previous study of infrasound detection in the cod, the inner ear was suggested to be the sensory organ responsible for the responses. However, a possible involvement of the lateral-line system in the observed low-frequency detection could not be ruled out. The infrasound sensitivity was therefore studied in perch (Perca fluviatilis) with normal and blocked lateral-line organs. The experiments were performed using a standing wave acoustic tube and the cardiac conditioning technique. All perch readily responded to infrasound frequencies down to 0.3 Hz with threshold values of approximately 2×10−4 ms−2. These thresholds were not affected by complete blocking of the lateral-line system with Co2+, which suggests that the inner ear is responsible for the observed infrasound detection by the perch.


2018 ◽  
Vol 58 (2) ◽  
pp. 329-340 ◽  
Author(s):  
Clare V H Baker ◽  
Melinda S Modrell

Abstract The vertebrate lateral line system comprises a mechanosensory division, with neuromasts containing hair cells that detect local water movement (“distant touch”); and an electrosensory division, with electrosensory organs that detect the weak, low-frequency electric fields surrounding other animals in water (primarily used for hunting). The entire lateral line system was lost in the amniote lineage with the transition to fully terrestrial life; the electrosensory division was lost independently in several lineages, including the ancestors of frogs and of teleost fishes. (Electroreception with different characteristics subsequently evolved independently within two teleost lineages.) Recent gene expression studies in a non-teleost actinopterygian fish suggest that electroreceptor ribbon synapses employ the same transmission mechanisms as hair cell ribbon synapses, and show that developing electrosensory organs express transcription factors essential for hair cell development, including Atoh1 and Pou4f3. Previous hypotheses for electroreceptor evolution suggest either that electroreceptors and hair cells evolved independently in the vertebrate ancestor from a common ciliated secondary cell, or that electroreceptors evolved from hair cells. The close developmental and putative physiological similarities implied by the gene expression data support the latter hypothesis, i.e., that electroreceptors evolved in the vertebrate ancestor as a “sister cell-type” to lateral line hair cells.


Author(s):  
Mark E. Warchol ◽  
Angela Schrader ◽  
Lavinia Sheets

AbstractThe sensory organs of the inner ear contain resident populations of macrophages, which are recruited to sites of cellular injury. Such macrophages are known to phagocytose the debris of dying cells but the full role of macrophages in otic pathology is not understood. Lateral line neuromasts of zebrafish contain hair cells similar to those in the inner ear, and the optical clarity of larval zebrafish permits direct imaging of cellular interactions. In this study, we used larval zebrafish to characterize the response of macrophages to ototoxic injury of lateral line hair cells. Macrophages migrated into neuromasts within 20 min of exposure to the ototoxic antibiotic neomycin. The number of macrophages in close proximity of injured neuromasts was similar to that observed near uninjured neuromasts, suggesting that this early inflammatory response was mediated by ‘local’ macrophages. Upon entering injured neuromasts, macrophages actively phagocytosed hair cell debris. Such phagocytosis was significantly reduced by inhibiting Src-family kinases. Using chemical-genetic ablation of macrophages prior to ototoxic injury, we also examined whether macrophages were essential for the initiation of hair cell regeneration after neomycin exposure. Results revealed only minor differences in hair cell recovery in macrophage-depleted vs. control fish, suggesting that macrophages are not essential for the regeneration of lateral line hair cells.


2021 ◽  
Author(s):  
Francesco Gianoli ◽  
Brenna Hogan ◽  
&Eacutemilien Dilly ◽  
Thomas Risler ◽  
Andrei S Kozlov

Since the pioneering work of Thomas Gold published in 1948, it has been known that we owe our sensitive sense of hearing to a process in the inner ear that can amplify incident sounds on a cycle-by-cycle basis. Termed the active process, it uses energy to counteract the viscous dissipation associated with sound-evoked vibrations of the ear's mechanotransduction apparatus. Despite its importance, the mechanism of the active process and the proximate source of energy that powers it have remained elusive—especially at the high frequencies characteristic of mammalian hearing. This is partly due to our insufficient understanding of the mechanotransduction process in hair cells, the sensory receptors and amplifiers of the inner ear. It has previously been proposed that a cyclical binding of Ca2+ ions to individual mechanotransduction channels could power the active process. That model, however, relied on tailored reaction rates that structurally forced the direction of the cycle. Here, we ground our study on our previous model of hair-cell mechanotransduction, which relied on the cooperative gating of pairs of channels, and incorporate into it the cyclical binding of Ca2+ ions. With a single binding site per channel and reaction rates drawn from thermodynamic principles, our model shows that hair cells behave as nonlinear oscillators that exhibit Hopf bifurcations, dynamical instabilities long understood to be signatures of the active process. Using realistic parameter values, we find bifurcations at frequencies in the kilohertz range with physiological Ca2+ concentrations. In contrast to the myosin-based mechanism, responsible for low-frequency relaxation oscillations in the vestibular hair cells of amphibians, the current model relies on the electrochemical gradient of Ca2+ as the only energy source for the active process and on the relative motion of cooperative channels within the stereociliary membrane as the single mechanical driver. Equipped with these two mechanisms, a hair bundle proves capable of operating at frequencies in the kilohertz range, characteristic of mammalian hearing.


Sign in / Sign up

Export Citation Format

Share Document