scholarly journals Vestibular and Auditory Hair Cell Regeneration Following Targeted Ablation of Hair Cells With Diphtheria Toxin in Zebrafish

2021 ◽  
Vol 15 ◽  
Author(s):  
Erin Jimenez ◽  
Claire C. Slevin ◽  
Luis Colón-Cruz ◽  
Shawn M. Burgess

Millions of Americans experience hearing or balance disorders due to loss of hair cells in the inner ear. The hair cells are mechanosensory receptors used in the auditory and vestibular organs of all vertebrates as well as the lateral line systems of aquatic vertebrates. In zebrafish and other non-mammalian vertebrates, hair cells turnover during homeostasis and regenerate completely after being destroyed or damaged by acoustic or chemical exposure. However, in mammals, destroying or damaging hair cells results in permanent impairments to hearing or balance. We sought an improved method for studying hair cell damage and regeneration in adult aquatic vertebrates by generating a transgenic zebrafish with the capacity for targeted and inducible hair cell ablation in vivo. This model expresses the human diphtheria toxin receptor (hDTR) gene under the control of the myo6b promoter, resulting in hDTR expressed only in hair cells. Cell ablation is achieved by an intraperitoneal injection of diphtheria toxin (DT) in adult zebrafish or DT dissolved in the water for larvae. In the lateral line of 5 days post fertilization (dpf) zebrafish, ablation of hair cells by DT treatment occurred within 2 days in a dose-dependent manner. Similarly, in adult utricles and saccules, a single intraperitoneal injection of 0.05 ng DT caused complete loss of hair cells in the utricle and saccule by 5 days post-injection. Full hair cell regeneration was observed for the lateral line and the inner ear tissues. This study introduces a new method for efficient conditional hair cell ablation in adult zebrafish inner ear sensory epithelia (utricles and saccules) and demonstrates that zebrafish hair cells will regenerate in vivo after this treatment.

2021 ◽  
Author(s):  
Erin Jimenez ◽  
Claire C Slevin ◽  
Luis Colon Cruz ◽  
Shawn M Burgess

Millions of Americans experience hearing or balance disorders due to loss of hair cells in the inner ear. The hair cells are mechanosensory receptors used in the auditory and vestibular organs of all vertebrates as well as the lateral line systems of aquatic vertebrates. In zebrafish and other non-mammalian vertebrates, hair cells turn over during homeostasis and regenerate completely after being destroyed or damaged by acoustic or chemical exposure. However in mammals, destroying or damaging hair cells results in permanent impairments to hearing or balance. We sought an improved method for studying hair cell damage and regeneration in adult aquatic vertebrates by generating a transgenic zebrafish with the capacity for targeted and inducible hair cell ablation in vivo. This model expresses the human diphtheria toxin receptor (hDTR) gene under the control of the myo6b promoter, resulting in hDTR expressed only in hair cells. Cell ablation is achieved by an intraperitoneal injection of diphtheria toxin (DT) in adult zebrafish or DT dissolved in the water for larvae. In the lateral line of 5 dpf zebrafish, ablation of hair cells by DT treatment occurred within 2 days in a dose-dependent manner. Similarly, in adult utricles and saccules, a single intraperitoneal injection of 0.05 ng DT caused complete loss of hair cells in the utricle and saccule by 5 days post-injection. Full hair cell regeneration was observed for the lateral line and the inner ear tissues. This study introduces a new method for efficient conditional hair cell ablation in adult zebrafish inner ear sensory epithelia (utricles and saccules) and demonstrates that zebrafish hair cells will regenerate in vivo after this treatment.


2021 ◽  
Vol 14 ◽  
Author(s):  
Mark E. Warchol ◽  
Angela Schrader ◽  
Lavinia Sheets

The sensory organs of the inner ear contain resident populations of macrophages, which are recruited to sites of cellular injury. Such macrophages are known to phagocytose the debris of dying cells but the full role of macrophages in otic pathology is not understood. Lateral line neuromasts of zebrafish contain hair cells that are nearly identical to those in the inner ear, and the optical clarity of larval zebrafish permits direct imaging of cellular interactions. In this study, we used larval zebrafish to characterize the response of macrophages to ototoxic injury of lateral line hair cells. Macrophages migrated into neuromasts within 20 min of exposure to the ototoxic antibiotic neomycin. The number of macrophages in the near vicinity of injured neuromasts was similar to that observed near uninjured neuromasts, suggesting that this early inflammatory response was mediated by “local” macrophages. Upon entering injured neuromasts, macrophages actively phagocytosed hair cell debris. The injury-evoked migration of macrophages was significantly reduced by inhibition of Src-family kinases. Using chemical-genetic ablation of macrophages before the ototoxic injury, we also examined whether macrophages were essential for the initiation of hair cell regeneration. Results revealed only minor differences in hair cell recovery in macrophage-depleted vs. control fish, suggesting that macrophages are not essential for the regeneration of lateral line hair cells.


Author(s):  
Mark E. Warchol ◽  
Angela Schrader ◽  
Lavinia Sheets

AbstractThe sensory organs of the inner ear contain resident populations of macrophages, which are recruited to sites of cellular injury. Such macrophages are known to phagocytose the debris of dying cells but the full role of macrophages in otic pathology is not understood. Lateral line neuromasts of zebrafish contain hair cells similar to those in the inner ear, and the optical clarity of larval zebrafish permits direct imaging of cellular interactions. In this study, we used larval zebrafish to characterize the response of macrophages to ototoxic injury of lateral line hair cells. Macrophages migrated into neuromasts within 20 min of exposure to the ototoxic antibiotic neomycin. The number of macrophages in close proximity of injured neuromasts was similar to that observed near uninjured neuromasts, suggesting that this early inflammatory response was mediated by ‘local’ macrophages. Upon entering injured neuromasts, macrophages actively phagocytosed hair cell debris. Such phagocytosis was significantly reduced by inhibiting Src-family kinases. Using chemical-genetic ablation of macrophages prior to ototoxic injury, we also examined whether macrophages were essential for the initiation of hair cell regeneration after neomycin exposure. Results revealed only minor differences in hair cell recovery in macrophage-depleted vs. control fish, suggesting that macrophages are not essential for the regeneration of lateral line hair cells.


Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 961-973 ◽  
Author(s):  
J.S. Stone ◽  
E.W. Rubel

Postembryonic production of hair cells, the highly specialized receptors for hearing, balance and motion detection, occurs in a precisely controlled manner in select species, including avians. Notch1, Delta1 and Serrate1 mediate cell specification in several tissues and species. We examined expression of the chicken homologs of these genes in the normal and drug-damaged chick inner ear to determine if signaling through this pathway changes during hair cell regeneration. In untreated post-hatch chicks, Delta1 mRNA is abundant in a subpopulation of cells in the utricle, which undergoes continual postembryonic hair cell production, but it is absent from all cells in the basilar papilla, which is mitotically quiescent. By 3 days after drug-induced hair cell injury, Delta1 expression is highly upregulated in areas of cell proliferation in both the utricle and basilar papilla. Delta1 mRNA levels are elevated in progenitor cells during DNA synthesis and/or gap 2 phases of the cell cycle and expression is maintained in both daughter cells immediately after mitosis. Delta1 expression remains upregulated in cells that differentiate into hair cells and is downregulated in cells that do not acquire the hair cell fate. Delta1 mRNA levels return to normal by 10 days after hair cell injury. Serrate1 is expressed in both hair cells and support cells in the utricle and basilar papilla, and its expression does not change during the course of drug-induced hair cell regeneration. In contrast, Notch1 expression, which is limited to support cells in the quiescent epithelium, is increased in post-M-phase cell pairs during hair cell regeneration. This study provides initial evidence that Delta-Notch signaling may be involved in maintaining the correct cell types and patterns during postembryonic replacement of sensory epithelial cells in the chick inner ear.


Author(s):  
Ru Zhang ◽  
Xiao-Peng Liu ◽  
Ya-Juan Li ◽  
Ming Wang ◽  
Lin Chen ◽  
...  

AbstractBackgroundHuman cochlear hair cells cannot spontaneously regenerate after loss. In contrast, those in fish and amphibians have a remarkable ability to regenerate after damaged. Previous studies focus on signaling mechanisms of hair cell regeneration, such as Wnt and Notch signals but seldom on the fact that the beginning of regeneration is accompanied by a large number of inflammatory responses. The detailed role of this inflammation in hair cell regeneration is still unknown. In addition, there is no appropriate behavioral method to quantitatively evaluate the functional recovery of lateral line hair cells after regeneration.ResultsIn this study, we found that when inflammation was suppressed, the regeneration of lateral line hair cells and the recovery of the rheotaxis of the larvae were significantly delayed. Calcium imaging showed that the function of the neuromasts in the inflammation-inhibited group was weaker than that in the non-inflammation-inhibited group at the Early Stage of regeneration, and returned to normal at the Late Stage. Calcium imaging also revealed the cause of the mismatch between the function and quantity during regeneration.ConclusionsOur results, meanwhile, suggest that suppressing inflammation delays hair cell regeneration and functional recovery when hair cells are damaged. This study may provide a new knowledge for how to promote hair cell regeneration and functional recovery in adult mammals.


2002 ◽  
Vol 445 (2) ◽  
pp. 176-198
Author(s):  
Kenji Kondo ◽  
Hiroshi Sagara ◽  
Kazushige Hirosawa ◽  
Kimitaka Kaga ◽  
Satsuki Matsushima ◽  
...  

1994 ◽  
Vol 111 (3P1) ◽  
pp. 281-301 ◽  
Author(s):  
Edwin W Rubel ◽  
Terance T. Tsue ◽  
Elizabeth C. Oesterle ◽  
Edwin W. Rubel

Hearing and balance disorders caused by the loss of inner ear hair cells Is a common problem encountered in otolaryngology-head and neck surgery. The postembryonic production of hair cells in cold-blooded vertebrates has been known for several decades, and recent studies in the avian inner ear after ototoxic drug and noise damage have demonstrated a remarkable capacity for both anatomic and functional recovery. The regeneration of sensory hair cells has been shown to be integral to this repair process. Current work is focusing on the cellular progenitor source of new hair cells and the trigger mechanism responsible for inducing hair cell regeneration. Preliminary studies suggest that reparative proliferation may also occur in the mammalian inner ear. Work in this field is moving at a rapid pace. The results thus far have yielded optimism that direct stimulation of hair cell production or transplantation of living hair cells may eventually become treatment modalities for the damaged human inner ear. These proposals would have been considered unrealistic less than 10 years ago, but they now have caught the full attention of both clinician and researcher.


2020 ◽  
Author(s):  
Julia Peloggia ◽  
Daniela Münch ◽  
Paloma Meneses-Giles ◽  
Andrés Romero-Carvajal ◽  
Melainia McClain ◽  
...  

Mammalian inner ear and fish lateral line sensory hair cells depend on fluid motion to transduce environmental signals and elicit a response. In mammals, actively maintained ionic homeostasis of the cochlear and vestibular fluid (endolymph) is essential for hair cell function and numerous mammalian hearing and vestibular disorders arise from disrupted endolymph ion homeostasis. Lateral line hair cells, however, are openly exposed to the aqueous environment with fluctuating ionic composition. How sensory transduction in the lateral line is maintained during environmental changes of ionic composition is not fully understood. Using lineage labeling, in vivo time lapse imaging and scRNA-seq, we discovered highly motile skin-derived cells that invade mature mechanosensory organs of the zebrafish lateral line and differentiate into Neuromast-associated (Nm) ionocytes. Furthermore, the invasive behavior is adaptive as it is triggered by drastic fluctuations in environmental stimuli. Our findings challenge the notion of an entirely placodally-derived lateral line and identify Nm ionocytes as regulators of mechanosensory hair cell function by modulating the ionic microenvironment. The discovery of lateral line ionocytes provides an experimentally accessible in vivo system to study cell invasion and migration, as well as the physiological adaptation of vertebrate organs to changing environmental conditions.


2019 ◽  
Author(s):  
Roberto Rodríguez-Morales ◽  
Alexis Santana-Cruz ◽  
Tiffany Tossas-Deida ◽  
Aranza Torrado-Tapias ◽  
Martine Behra

AbstractIrreversible hair cell (HC) loss in the inner ear is the leading cause for hearing and balance disorders. Discovery of therapeutic molecules preventing HC death and promoting regeneration, which does not occur in mammals like it does in lower vertebrates, is of major interest. In fish, HCs are also found in a superficial mechano-sensory organ called the lateral line (LL). LL-HCs are exposed to surrounding waters and are accessible to waterborne molecules providing a potent mean to study in vivo HC stability and regeneration. Commercial small molecule libraries were tested in screens for HC survival and regeneration in zebrafish, but ethnobotanical pharmacopeias remain totally unexplored because of the challenge that such complex mixtures represent. A rapid and cost-effective first-pass assay informing about the regenerative potential of an extract is therefore critical before embarking on cumbersome purification steps. We chose to test Valerian crude root extracts (Val), which are typically composed of more than 150 different components, amongst which is a main and abundant compound: valeric acid (VA). VA discovery and purification led to the commercialization of a synthetic analog: Valproic acid (VPA) which is a first-line drug for epilepsy and bipolar disorders that was also shown to significantly hamper LL-HC regeneration. We reasoned that if Val is not toxic, it would elicit effects like VPA. Thus, we synchronously ablated HCs in 5-day post-fertilization (dpf) larvae and monitored regeneration over the following 3 days in the presence of Val at the highest well-tolerated concentration (Val1 = 1mg/ml), or VPA (= 150μM) as previously published. Both treatments significantly decreased HC regeneration without affecting HC-survival suggesting a similar mode of action. Furthermore, Val application as early as 3dpf and prolonged for up to 4 days did not affect larval survival, indicating that reduced HC-regeneration was not due to overall toxicity. Taken together, Val and VPA-treatments displayed a comparable response in a simple and up-scalable HC-regeneration assay which is an in-first-pass potent approach for drug discovery.


Sign in / Sign up

Export Citation Format

Share Document