Long‐term trends in ocean noise

2006 ◽  
Vol 120 (5) ◽  
pp. 3382-3382
Author(s):  
D. Benjamin Reeder ◽  
Rommel Pucan ◽  
Curtis A. Collins
Keyword(s):  
2020 ◽  
Author(s):  
Sei-Him Cheong ◽  
Stephen P Robinson ◽  
Peter M Harris ◽  
Lian S Wang ◽  
Valerie Livina

<p>Underwater noise is recognised as a form of marine pollutant and there is evidence that over exposure to excessive levels of noise can have effects on the wellbeing of the marine ecosystem. Consequently, the variation in the ambient sound levels in the deep ocean has been the subject of a number of recent studies, with particular interest in the identification of long-term trends. We describe a statistical method for performing long-term trend analysis and uncertainty evaluation of the estimated trends from deep-ocean noise data. This study has been extended to include  measured data  from four monitoring stations located in the Indian (Cape Leeuwin & Diego Garcia), Pacific (Wake Island) and Southern Atlantic (Ascension Islands) Oceans over periods spanning between 8 to 15 years. The data were obtained from the hydro-acoustic monitoring stations of the Preparatory Commission for the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). The monitoring stations provide information at a sampling frequency of 250 Hz, leading to very large datasets, and at acoustic frequencies up to 105 Hz.</p><p>The analysis method uses a flexible discrete model that incorporates terms that capture seasonal variations in the data together with a moving-average statistical model to describe the serial correlation of residual deviations. The trend analysis is applied to time series representing daily aggregated statistical levels for four frequency bands to obtain estimates for the change in sound pressure level (SPL) over the examined period with associated coverage intervals. The analysis demonstrates that there are statistically significant changes in the levels of deep-ocean noise over periods exceeding a decade. The main features of the approach include (a) using a functional model  with terms  that represent both long-term and seasonal behaviour of deep-ocean noise, (b) using a statistical model to capture the serial correlation of the residual deviations that are not explained by the functional model, (c) using daily aggregation intervals derived from 1-minute  sound pressure level averages, and (d) applying a non-parametric approach to validate the uncertainties of the trend estimates that avoids the need to make an assumption about the distribution of the residual deviations.</p><p>The obtained results show the long term trends vary differently at the four stations. It was observed that low frequency noise generally dominated the significant trends in these oceans. The relative differences between the various statistical levels are remarkably similar for all the frequency bands. Given the complexity of the acoustic environment, it is difficult to identify the main causes of these trends. Some possible explanations for the observed trends are discussed. It was however observed some stations are subjected to strong seasonal variation with a high degree of correlation with climatic factors such as sea surface temperature, Antarctic ice coverage and wind speed. The same seasonal effects is less pronounced in station located closer to the equator.</p>


Author(s):  
Stephen P Robinson ◽  
Peter M Harris ◽  
Lian Wang ◽  
Sei-Him Cheong ◽  
Valerie Livina

2003 ◽  
Vol 37 (4) ◽  
pp. 6-15 ◽  
Author(s):  
Douglas Wartzok ◽  
Arthur N. Popper ◽  
Jonathan Gordon ◽  
Jennifer Merrill

The issues surrounding marine mammals and noise cannot be managed effectively without an understanding of the effects of that noise on individual mammals and their populations. In the spring of 2003 the National Research Council released Ocean Noise and Marine Mammals, a report that reviewed sources of ocean noise (natural and anthropogenic), the effects of noise on marine mammals, patterns and long-term trends in ocean noise, and included recommendations intended to improve understanding of the sources and impacts of anthropogenic marine noise. This paper provides a brief summary of observed effects of ocean noise on marine mammals and the factors that can change the response of the animal to the noise exposure. It introduces the reader to short- and long-term behavior changes that have been observed in marine mammals in response to ocean noise, and discusses future directions for marine mammal research.


2014 ◽  
Vol 513 ◽  
pp. 143-153 ◽  
Author(s):  
CD Stallings ◽  
JP Brower ◽  
JM Heinlein Loch ◽  
A Mickle

Sign in / Sign up

Export Citation Format

Share Document