The effects of internal tides on phase and amplitude statistics in the Philippine Sea

2013 ◽  
Vol 133 (5) ◽  
pp. 3345-3345
Author(s):  
John A. Colosi ◽  
Tarun Chandrayadula ◽  
Weston Coby ◽  
Jacob Fischer ◽  
Brian D. Dushaw ◽  
...  
2018 ◽  
Vol 123 (8) ◽  
pp. 5091-5112 ◽  
Author(s):  
Yang Wang ◽  
Zhenhua Xu ◽  
Baoshu Yin ◽  
Yijun Hou ◽  
Hang Chang

2014 ◽  
Vol 44 (5) ◽  
pp. 1386-1405 ◽  
Author(s):  
Colette G. Kerry ◽  
Brian S. Powell ◽  
Glenn S. Carter

Abstract This study examines the effects of the subtidal circulation on the generation and propagation of the M2 internal tide in the Philippine Sea using a primitive equation model. Barotropic to baroclinic conversion at the Luzon Strait is found to vary due to the background circulation changes over the generation site and the changing influence of remotely generated internal tides from the Mariana Arc. The varying effect of remotely generated waves results from both changing generation energy levels at the Mariana Arc and variability in the propagation of the internal tides across the Philippine Sea. The magnitude and direction of the depth-integrated baroclinic energy fluxes vary temporally, due to a combination of changing generation, propagation, and dissipation. Spatial patterns of internal tide propagation near the Luzon Strait are influenced by the locations of mesoscale eddies to the east and west of the strait. The results provide insight into the mechanisms of variability of the baroclinic tides and highlight the importance of considering both the remotely generated internal tides and the subtidal dynamics to estimate internal tide energetics.


2021 ◽  
Vol 28 (2) ◽  
pp. 271-284
Author(s):  
Jia You ◽  
Zhenhua Xu ◽  
Qun Li ◽  
Robin Robertson ◽  
Peiwen Zhang ◽  
...  

Abstract. Turbulent mixing in the ocean interior is mainly attributed to internal wave breaking; however, the mixing properties and the modulation effects of mesoscale environmental factors are not well known. Here, the spatially inhomogeneous and seasonally variable diapycnal diffusivities in the upper Philippine Sea were estimated from Argo float data using a strain-based, fine-scale parameterization. Based on a coordinated analysis of multi-source data, we found that the driving processes for diapycnal diffusivities mainly included the near-inertial waves and internal tides. Mesoscale features were important in intensifying the mixing and modulating of its spatial pattern. An interesting finding was that, besides near-inertial waves, internal tides also contributed significant diapycnal mixing in the upper Philippine Sea. The seasonal cycles of diapycnal diffusivities and their contributors differed zonally. In the midlatitudes, wind mixing dominated and was strongest in winter and weakest in summer. In contrast, tidal mixing was more predominant in the lower latitudes and had no apparent seasonal variability. Furthermore, we provide evidence that the mesoscale environment in the Philippine Sea played a significant role in regulating the intensity and shaping the spatial inhomogeneity of the internal tidal mixing. The magnitudes of internal tidal mixing were greatly elevated in regions of energetic mesoscale processes. Anticyclonic mesoscale features were found to enhance diapycnal mixing more significantly than cyclonic ones.


2013 ◽  
Author(s):  
John Colosi ◽  
Tarun Chandrayadula ◽  
Jacob Fischer ◽  
Weston Coby ◽  
Brian Dushaw ◽  
...  

2013 ◽  
Vol 43 (1) ◽  
pp. 187-204 ◽  
Author(s):  
Colette G. Kerry ◽  
Brian S. Powell ◽  
Glenn S. Carter

Abstract This study investigates the impact of remotely generated internal tides on model estimates of barotropic to baroclinic tidal conversion for two generation sites bounding the Philippine Sea: the Luzon Strait and the Mariana Island Arc. A primitive equation model is used to characterize the internal tides generated by the principal semidiurnal tide (M2) over a domain encompassing the two generation sites. Energetic internal tides are generated at the Luzon Strait where nearly 17 GW of barotropic tide energy is converted to baroclinic energy, of which 44% (4.78 GW) is radiated eastward into the Philippine Sea. From the Mariana Arc, baroclinic energy propagates westward into the Philippine Sea as a result of 3.82 GW of barotropic to baroclinic energy conversion. Simulations that focus on each generation site without influence of the other are performed, and comparisons show that remotely generated internal tides have a significant effect on local conversion at the two sites. Total conversion is greater in the absence of remotely generated internal tides at both sites: 11% greater at the Luzon Strait and 65% greater at the Mariana Arc. The first three modes of the remotely generated internal tides traverse the basin and alter the amplitude and phase of bottom pressure. The arrival of the remote internal tides varies significantly with changing stratification and mesoscale circulation. The results suggest that an important source of variability in local conversion around the globe is due to remotely generated internal tides.


2021 ◽  
Author(s):  
Jia You ◽  
Zhenhua Xu ◽  
Qun Li ◽  
Peiwen Zhang

<p>Turbulent mixing in the ocean interior is mainly contributed by internal wave breaking; however, the mixing properties and the modulation effects of mesoscale environmental factors are not well-known. Here, the spatially inhomogeneous and seasonally variable diapycnal diffusivities in the upper Philippine Sea were estimated from ARGO float data using a strain-based finescale parameterization. Based on a coordinated analysis of multi-source data, we found that the driving processes for diapycnal diffusivities mainly included the near-inertial waves and internal tides. Mesoscale features were important in intensifying the mixing and modulating its spatial pattern. One interesting finding was that, besides near-inertial waves, internal tides also contributed significant diapycnal mixing for the upper Philippine Sea. The seasonal cycles of diapycnal diffusivities and their contributors differed zonally. In the mid-latitudes, wind-mixing dominated and was strongest in winter and weakest in summer. In contrast, tidal-mixing was more predominant in the lower-latitudes and had no apparent seasonal variability. Furthermore, we provide evidence that the mesoscale environment in the Philippine Sea played a significant role in regulating the intensity and shaping the spatial inhomogeneity of the internal tidal mixing. The magnitudes of internal tidal mixing was greatly elevated in regions of energetic mesoscale processes. The anticyclonic mesoscale features were found to enhance diapycnal mixing more significantly than did cyclonic ones.</p>


2014 ◽  
Vol 44 (12) ◽  
pp. 3209-3224 ◽  
Author(s):  
Colette G. Kerry ◽  
Brian S. Powell ◽  
Glenn S. Carter

Abstract This study uses a primitive equation model to estimate the time-varying M2 internal tide dissipation in the Philippine Sea in the presence of the subtidal circulation. The time-mean diapycnal diffusivity due to the M2 internal tide is estimated to be 4.0–4.8 × 10−4 m2 s−1 at the Luzon Strait and 2–9 × 10−5 m2 s−1 in the Philippine Sea basin. The variability in internal tides and their interactions with the subtidal ocean circulation results in significant spatial and temporal variability in the energy available for mixing. The subtidal circulation influences internal-tide-induced mixing in two ways: by introducing variability in internal tide generation and by increased dissipation of baroclinic energy associated with greater velocity shear. Close to the generation site, mixing is dominated by high-mode internal tide dissipation, while in the far field the influence of the mesoscale energy on internal tide dissipation is significant, resulting in increased dissipation. This study presents model-based estimates of the important and relatively unknown effect of mesoscale circulation on internal-tide-induced mixing away from internal tide generation sites in a region of high eddy kinetic energy.


2021 ◽  
Author(s):  
Jia You ◽  
Zhenhua Xu ◽  
Qun Li ◽  
Robin Robertson ◽  
Peiwen Zhang ◽  
...  

Abstract. Turbulent mixing in the ocean interior is mainly contributed by internal wave breaking; however, the mixing properties and the modulation effects of mesoscale environmental factors are not well-known. Here, the spatially inhomogeneous and seasonally variable diapycnal diffusivities in the upper Philippine Sea were estimated from ARGO float data using a strain-based finescale parameterization. Based on a coordinated analysis of multi-source data, we found that the driving processes for diapycnal diffusivities mainly included the near-inertial waves and internal tides. Mesoscale features were important in intensifying the mixing and modulating its spatial pattern. One interesting finding was that, besides near-inertial waves, internal tides also contributed significant diapycnal mixing for the upper Philippine Sea. The seasonal cycles of diapycnal diffusivities and their contributors differed zonally. In the mid-latitudes, wind-mixing dominated and was strongest in winter and weakest in summer. In contrast, tidal-mixing was more predominant in the lower-latitudes and had no apparent seasonal variability. Furthermore, we provide evidence that the mesoscale environment in the Philippine Sea played a significant role in regulating the intensity and shaping the spatial inhomogeneity of the internal tidal mixing. The magnitudes of internal tidal mixing was greatly elevated in regions of energetic mesoscale processes. The anticyclonic mesoscale features were found to enhance diapycnal mixing more significantly than did cyclonic ones.


Sign in / Sign up

Export Citation Format

Share Document