Modeling high-frequency acoustic backscatter for remote sensing of oil under sea ice and oil encapsulated in sea ice

2015 ◽  
Vol 138 (3) ◽  
pp. 1744-1744 ◽  
Author(s):  
Dajun Tang ◽  
Derrell R. Jackson ◽  
Christopher Bassett ◽  
Andone C. Lavery
2013 ◽  
Vol 54 (62) ◽  
pp. 59-64 ◽  
Author(s):  
K. Shirasawa ◽  
N. Ebuchi ◽  
M. Leppäranta ◽  
T. Takatsuka

AbstractA C-band sea-ice radar (SIR) network system was operated to monitor the sea-ice conditions off the Okhotsk Sea coast of northern Hokkaido, Japan, from 1969 to 2004. The system was based on three radar stations, which were capable of continuously monitoring the sea surface as far as 60 km offshore along a 250 km long coastal section. In 2004 the SIR system was closed down and a sea surface monitoring programme was commenced using high-frequency (HF) radar; this system provides information on surface currents in open-water conditions, while areas with ‘no signal’ can be identified as sea ice. The present study compares HF radar data with SIR data to evaluate their feasibility for sea-ice remote sensing. The period of overlapping data was 1.5 months. The results show that HF radar information can be utilized for ice-edge mapping although it cannot fully compensate for the loss of the SIR system. In particular, HF radar does not provide ice concentration, ice roughness and geometrical structures or ice kinematics. The probability of ice-edge detection by HF radar was 0.9 and the correlation of the ice-edge distance between the radars was 0.7.


2020 ◽  
Vol 223 ◽  
pp. 02010
Author(s):  
Valeriy Tutatchikov ◽  
Mikhail Noskov

At present, methods of digital processing of Earth remote sensing images are widely used to improve the image quality. For example, many images are discarded due to high clouds in the images, which obscure objects of interest. In this paper, the possibility of using high- frequency global filters to reduce cloudiness in the image is considered, and the results of image enhancement are shown.


2020 ◽  
Vol 43 (1) ◽  
pp. 151-161
Author(s):  
F. L. HILLEBRAND ◽  
C. N. ROSA ◽  
J. B. JESUS ◽  
U. F. BREMER

2021 ◽  
Author(s):  
Wayne de Jager ◽  
Marcello Vichi

Abstract. Sea-ice extent variability, a measure based on satellite-derived sea ice concentration measurements, has traditionally been used as an essential climate variable to evaluate the impact of climate change on polar regions. However, concentration- based measurements of ice variability do not allow to discriminate the relative contributions made by thermodynamic and dynamic processes, prompting the need to use sea-ice drift products and develop alternative methods to quantify changes in sea ice dynamics that would indicate trends in Antarctic ice characteristics. Here, we present a new method to automate the detection of rotational drift features in Antarctic sea ice at daily timescales using currently available remote sensing ice motion products from EUMETSAT OSI SAF. Results show that there is a large discrepancy in the detection of cyclonic drift features between products, both in terms of intensity and year-to-year distributions, thus diminishing the confidence at which ice drift variability can be further analysed. Product comparisons showed that there was good agreement in detecting anticyclonic drift, and cyclonic drift features were measured to be 1.5–2.2 times more intense than anticyclonic features. The most intense features were detected by the merged product, suggesting that the processing chain used for this product could be injecting additional rotational momentum into the resultant drift vectors. We conclude that it is therefore necessary to better understand why the products lack agreement before further trend analysis of these drift features and their climatic significance can be assessed.


Author(s):  
Thomas C. Grenfell ◽  
Donald J. Cavalieri ◽  
Josefino C. Comiso ◽  
Mark R. Drinkwater ◽  
Robert G. Onstott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document