Retreiving global nonclassical nonlinearity parameters from local measurements

2016 ◽  
Vol 140 (4) ◽  
pp. 3166-3166
Author(s):  
Martin Lott ◽  
Marcel Remillieux ◽  
Pierre-Yves Le Bas ◽  
Timothy J. Ulrich ◽  
Vincent Garnier ◽  
...  
2020 ◽  
Vol 46 (8) ◽  
pp. 767-770
Author(s):  
A. D. Gurchenko ◽  
E. Z. Gusakov ◽  
A. B. Altukhov ◽  
V. A. Ivanov ◽  
A. V. Sidorov ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 889
Author(s):  
Akram Touil ◽  
Kevin Weber ◽  
Sebastian Deffner

In classical thermodynamics the Euler relation is an expression for the internal energy as a sum of the products of canonical pairs of extensive and intensive variables. For quantum systems the situation is more intricate, since one has to account for the effects of the measurement back action. To this end, we derive a quantum analog of the Euler relation, which is governed by the information retrieved by local quantum measurements. The validity of the relation is demonstrated for the collective dissipation model, where we find that thermodynamic behavior is exhibited in the weak-coupling regime.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 130
Author(s):  
Mazaher Karimi ◽  
Mohammad Farshad ◽  
Qiteng Hong ◽  
Hannu Laaksonen ◽  
Kimmo Kauhaniemi

This article proposes a new passive islanding detection technique for inverter-based distributed generation (DG) in microgrids based on local synchrophasor measurements. The proposed method utilizes the voltage and current phasors measured at the DG connection point (point of connection, PoC). In this paper, the rate of change of voltages and the ratio of the voltage and current magnitudes (VoI index) at the PoC are monitored using micro-phasor measurement units. The developed local measurements based decentralized islanding detection technique is based on the VoI index in order to detect any kind of utility grid frequency fluctuations or oscillations and distinguishing them from islanding condition. The simulation studies confirm that the proposed scheme is accurate, robust, fast, and simple to implement for inverter-based DGs.


2021 ◽  
pp. 146808742110170
Author(s):  
Eric Gingrich ◽  
Michael Tess ◽  
Vamshi Korivi ◽  
Jaal Ghandhi

High-output diesel engine heat transfer measurements are presented in this paper, which is the first of a two-part series of papers. Local piston heat transfer, based on fast-response piston surface temperature data, is compared to global engine heat transfer based on thermodynamic data. A single-cylinder research engine was operated at multiple conditions, including very high-output cases – 30 bar IMEPg and 250 bar in-cylinder pressure. A wireless telemetry system was used to acquire fast-response piston surface temperature data, from which heat flux was calculated. An interpolation and averaging procedure was developed and a method to recover the steady-state portion of the heat flux based on the in-cylinder thermodynamic state was applied. The local measurements were spatially integrated to find total heat transfer, which was found to agree well with the global thermodynamic measurements. A delayed onset of the rise of spatially averaged heat flux was observed for later start of injection timings. The dataset is internally consistent, for example, the local measurements match the global values, which makes it well suited for heat transfer correlation development; this development is pursued in the second part of this paper.


2005 ◽  
Vol 72 (14) ◽  
Author(s):  
Nurit Avraham ◽  
Ady Stern ◽  
Yoko Suzuki ◽  
K. M. Mertes ◽  
M. P. Sarachik ◽  
...  
Keyword(s):  

2016 ◽  
Vol 462 ◽  
pp. 930-939 ◽  
Author(s):  
G.M. Bosyk ◽  
G. Bellomo ◽  
S. Zozor ◽  
M. Portesi ◽  
P.W. Lamberti

Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 763 ◽  
Author(s):  
Ana Costa ◽  
Roope Uola ◽  
Otfried Gühne

The effect of quantum steering describes a possible action at a distance via local measurements. Whereas many attempts on characterizing steerability have been pursued, answering the question as to whether a given state is steerable or not remains a difficult task. Here, we investigate the applicability of a recently proposed method for building steering criteria from generalized entropic uncertainty relations. This method works for any entropy which satisfy the properties of (i) (pseudo-) additivity for independent distributions; (ii) state independent entropic uncertainty relation (EUR); and (iii) joint convexity of a corresponding relative entropy. Our study extends the former analysis to Tsallis and Rényi entropies on bipartite and tripartite systems. As examples, we investigate the steerability of the three-qubit GHZ and W states.


2016 ◽  
Vol 22 (2) ◽  
pp. 422-431 ◽  
Author(s):  
Loïc Sorbier ◽  
Frédéric Bazer-Bachi ◽  
Yannick Blouët ◽  
Maxime Moreaud ◽  
Virginie Moizan-Basle

AbstractWe propose an original methodology to integrate local measurement for nontrivial object shape. The method employs the distance transform of the object and least-square fitting of numerically computed weighting functions extracted from it. The method is exemplified in the field of chemical engineering by calculating the global metal concentration in catalyst grains from uneven metal distribution profiles. Applying the methodology on synthetic profiles with the help of a very simple deposition model allows us to evaluate the accuracy of the method. For high symmetry objects such as an infinite cylinder, relative errors on global concentration are lower than 1% for well-resolved profiles. For a less symmetrical object, a tetralobe, the best estimator gives a relative error below 5% at the cost of increased measurement time. Applicability on a real case is demonstrated on an aged hydrodemetallation catalyst. Sampling of catalyst grains at the inlet and outlet of the reactor allowed conclusions concerning different reactivity for the trapped metals.


Sign in / Sign up

Export Citation Format

Share Document