Effects of interaural decoherence on sensitivity to interaural level differences across frequency

2021 ◽  
Vol 149 (6) ◽  
pp. 4630-4648
Author(s):  
Andrew D. Brown ◽  
Daniel J. Tollin
1999 ◽  
Vol 82 (1) ◽  
pp. 164-175 ◽  
Author(s):  
Kevin A. Davis ◽  
Ramnarayan Ramachandran ◽  
Bradford J. May

Single units in the central nucleus of the inferior colliculus (ICC) of unanesthetized decerebrate cats can be grouped into three distinct types (V, I, and O) according to the patterns of excitation and inhibition revealed in contralateral frequency response maps. This study extends the description of these response types by assessing their ipsilateral and binaural response map properties. Here the nature of ipsilateral inputs is evaluated directly using frequency response maps and compared with results obtained from methods that rely on sensitivity to interaural level differences (ILDs). In general, there is a one-to-one correspondence between observed ipsilateral input characteristics and those inferred from ILD manipulations. Type V units receive ipsilateral excitation and show binaural facilitation (EE properties); type I and type O units receive ipsilateral inhibition and show binaural excitatory/inhibitory (EI) interactions. Analyses of binaural frequency response maps show that these ILD effects extend over the entire receptive field of ICC units. Thus the range of frequencies that elicits excitation from type V units is expanded with increasing levels of ipsilateral stimulation, whereas the excitatory bandwidth of type I and O units decreases under the same binaural conditions. For the majority of ICC units, application of bicuculline, an antagonist for GABAA-mediated inhibition, does not alter the basic effects of binaural stimulation; rather, it primarily increases spontaneous and maximum discharge rates. These results support our previous interpretations of the putative dominant inputs to ICC response types and have important implications for midbrain processing of competing free-field sounds that reach the listener with different directional signatures.


2002 ◽  
Vol 112 (3) ◽  
pp. 1037-1045 ◽  
Author(s):  
William M. Hartmann ◽  
Zachary A. Constan

2017 ◽  
Vol 29 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Karim Youssef ◽  
◽  
Katsutoshi Itoyama ◽  
Kazuyoshi Yoshii

[abstFig src='/00290001/06.jpg' width='300' text='Efficient mobile speaker tracking' ] This paper jointly addresses the tasks of speaker identification and localization with binaural signals. The proposed system operates in noisy and echoic environments and involves limited computations. It demonstrates that a simultaneous identification and localization operation can benefit from a common signal processing front end for feature extraction. Moreover, a joint exploitation of the identity and position estimation outputs allows the outputs to limit each other’s errors. Equivalent rectangular bandwidth frequency cepstral coefficients (ERBFCC) and interaural level differences (ILD) are extracted. These acoustic features are respectively used for speaker identity and azimuth estimation through artificial neural networks (ANNs). The system was evaluated in simulated and real environments, with still and mobile speakers. Results demonstrate its ability to produce accurate estimations in the presence of noises and reflections. Moreover, the advantage of the binaural context over the monaural context for speaker identification is shown.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Ram Krips ◽  
Miriam Furst

The minimum audible angle test which is commonly used for evaluating human localization ability depends on interaural time delay, interaural level differences, and spectral information about the acoustic stimulus. These physical properties are estimated at different stages along the brainstem auditory pathway. The interaural time delay is ambiguous at certain frequencies, thus confusion arises as to the source of these frequencies. It is assumed that in a typical minimum audible angle experiment, the brain acts as an unbiased optimal estimator and thus the human performance can be obtained by deriving optimal lower bounds. Two types of lower bounds are tested: the Cramer-Rao and the Barankin. The Cramer-Rao bound only takes into account the approximation of the true direction of the stimulus; the Barankin bound considers other possible directions that arise from the ambiguous phase information. These lower bounds are derived at the output of the auditory nerve and of the superior olivary complex where binaural cues are estimated. An agreement between human experimental data was obtained only when the superior olivary complex was considered and the Barankin lower bound was used. This result suggests that sound localization is estimated by the auditory nuclei using ambiguous binaural information.


Sign in / Sign up

Export Citation Format

Share Document