Acute Effects of Accumulating Exercise on Postprandial Lipemia and C-Reactive Protein Concentrations in Young Men

2009 ◽  
Vol 19 (6) ◽  
pp. 569-582 ◽  
Author(s):  
Masashi Miyashita ◽  
Stephen F. Burns ◽  
David J. Stensel

The current study investigated the acute effects of accumulating short bouts of running on circulating concentrations of postprandial triacylglycerol (TAG) and C-reactive protein (CRP). Ten men, age 21–32 yr, completed two 1-d trials. On 1 occasion participants ran at 70% of maximum oxygen uptake in six 5-min bouts (i.e., 8:30, 10, and 11:30 a.m. and 1, 2:30, and 4 p.m.) with 85 min rest between runs. On another occasion participants rested throughout the day. In both trials, participants consumed test meals at 9 a.m. and 12 p.m. In each trial, venous blood samples were collected at 8:30, 10, and 11:30 a.m. and 1, 2:30, 4, and 5:30 p.m. for plasma TAG measurement and at 8:30 a.m. and 5:30 p.m. for serum CRP measurement. Total area under the curve for plasma TAG concentration versus time was 10% lower on the exercise trial than the control trial (M ± SEM: 13.5 ± 1.8 vs. 15.0 ± 1.9 mmol · 9 hr−1 · L−1; p = .004). Serum CRP concentrations did not differ between trials or over time. This study demonstrates that accumulating short bouts of running reduces postprandial plasma TAG concentrations (a marker for cardiovascular disease risk) but does not alter serum CRP concentrations.

Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1089 ◽  
Author(s):  
Christina M. Sciarrillo ◽  
Nicholas A. Koemel ◽  
Patrick M. Tomko ◽  
Katherine B. Bode ◽  
Sam R. Emerson

Background: Postprandial lipemia (PPL) is a cardiovascular disease risk factor. However, the effects of different fat sources on PPL remain unclear. We aimed to determine the postprandial response in triglycerides (TG) to four dietary fat sources in adults. Methods: Participants completed four randomized meal trials. For each meal trial, participants (n = 10; 5M/5F) consumed a high-fat meal (HFM) (13 kcal/kg; 61% of total kcal from fat) with the fat source derived from butter, coconut oil, olive oil, or canola oil. Blood was drawn hourly for 6 h post-meal to quantify PPL. Results: Two-way ANOVA of TG revealed a time effect (p < 0.0001), but no time–meal interaction (p = 0.56), or meal effect (p = 0.35). Meal trials did not differ with regard to TG total (p = 0.33) or incremental (p = 0.14) area-under-the-curve. When stratified by sex and the TG response was averaged across meals, two-way ANOVA revealed a time effect (p < 0.0001), time–group interaction (p = 0.0001), and group effect (p = 0.048), with men exhibiting a greater response than women, although this difference could be attributed to the pronounced difference in BMI between men and women within the sample. Conclusion: In our sample of young adults, postprandial TG responses to a single HFM comprised of different fat sources did not differ.


Sign in / Sign up

Export Citation Format

Share Document