Physical and Technical Demands of Rugby League 9s Tournament Match Play: A Preliminary Study

2015 ◽  
Vol 10 (6) ◽  
pp. 774-779 ◽  
Author(s):  
Thomas Kempton ◽  
Aaron J. Coutts

Purpose:To describe the physical and technical demands of rugby league 9s (RL9s) match play for positional groups.Methods:Global positioning system data were collected during 4 games from 16 players from a team competing in the Auckland RL9s tournament. Players were classified into positional groups (pivots, outside backs, and forwards). Absolute and relative physical-performance data were classified as total high-speed running (HSR; >14.4 km/h), very-high-speed running (VHSR; >19.0 km/h), and sprint (>23.0 km/h) distances. Technical-performance data were obtained from a commercial statistics provider. Activity cycles were coded by an experienced video analyst.Results:Forwards (1088 m, 264 m) most likely completed less overall and high-speed distances than pivots (1529 m, 371 m) and outside backs (1328 m, 312 m). The number of sprint efforts likely varied between positions, although differences in accelerations were unclear. There were no clear differences in relative total (115.6−121.3 m/min) and HSR (27.8−29.8 m/min) intensities, but forwards likely performed less VHSR (7.7 m/min) and sprint distance (1.3 m/min) per minute than other positions (10.2−11.8 m/min, 3.7−4.8 m/min). The average activity and recovery cycle lengths were ~50 and ~27 s, respectively. The average longest activity cycle was ~133 s, while the average minimum recovery time was ~5 s. Technical involvements including tackles missed, runs, tackles received, total collisions, errors, off-loads, line breaks, and involvements differed between positions.Conclusions:Positional differences exist for both physical and technical measures, and preparation for RL9s play should incorporate these differences.

2016 ◽  
Vol 11 (6) ◽  
pp. 816-823
Author(s):  
Joanne Hausler ◽  
Mark Halaki ◽  
Rhonda Orr

Purpose:To investigate activity profiles of Australian rugby league players during match play by competition, position, and match outcome in the New South Wales (NSW) second-tier competitions.Methods:Eighteen NSW Cup (NSWC) and 22 National Youth Competition (NYC) players, participating in this prospective cohort study, were categorized into 3 positional groups: forwards, adjustables, and outside backs. Global positioning system devices were used to examine activity profiles (distance and relative distance covered in walking, jogging, moderate, high, very high, and sprinting speed zones and quantification of high-speed movement) during match play in 21 NSWC and 22 NYC matches (N = 339 files).Results:NSWC players performed more sprints (36.5 ± 9.3 vs 28.4 ± 9.2) and greater relative distance in moderate speed zones (18.4 ± 3.2 vs 15.8 ± 3.1 m/min) than NYC. NSWC outside backs covered greater relative distance in jogging (29.4 ± 2.9 vs 24.8 ± 2.7 m/min) and moderate speed zones (17.0 ± 2.6 vs 12.8 ± 2.8 m/min) than their NYC counterparts. Adjustables performed more sprints (39.4 ± 10.1 vs 27.0 ± 9.2), high-intensity accelerations (3.7 ± 1.4 vs 1.9 ± 1.4), and relative distance (84.8 ± 4.3 vs 88.6 ± 4.8 m/min) than forwards and greater relative distance (81.5 ± 3.8 m/min) and sprints (31.0 ± 8.0) than outside backs. Adjustables recorded greater relative distance (19.8 m/min) in moderate speed zones than forwards (16.7 ± 3.1 m/min) and outside backs (14.9 ± 2.7 m/min). Adjustables covered ~685 m more than outside backs during a win.Conclusions:This is the first study to document the activity profiles of the NSW second-tier rugby league competition. The findings underscore the elevated match demands of adjustables and indicate higher intensity of play in NSWC than NYC that may more closely resemble the demands of National Rugby League match play.


Author(s):  
Thomas Mullen ◽  
Craig Twist ◽  
Matthew Daniels ◽  
Nicholas Dobbin ◽  
Jamie Highton

Purpose: To identify the association between several contextual match factors, technical performance, and external movement demands on the subjective task load of elite rugby league players. Methods: Individual subjective task load, quantified using the National Aeronautics and Space Administration Task Load Index (NASA-TLX), was collected from 29 professional rugby league players from one club competing in the European Super League throughout the 2017 season. The sample consisted of 26 matches (441 individual data points). Linear mixed modeling revealed that various combinations of contextual factors, technical performance, and movement demands were associated with subjective task load. Results: Greater number of tackles (effect size correlation ± 90% confidence intervals; η2 = .18 ± .11), errors (η2 = .15 ± .08), decelerations (η2 = .12 ± .08), increased sprint distance (η2 = .13 ± .08), losing matches (η2 = .36 ± .08), and increased perception of effort (η2 = .27 ± .08) led to most likely–very likely increases in subjective total task load. The independent variables included in the final model for subjective mental demand (match outcome, time played, and number of accelerations) were unclear, excluding a likely small correlation with technical errors (η2 = .10 ± .08). Conclusions: These data provide a greater understanding of the subjective task load and their association with several contextual factors, technical performance, and external movement demands during rugby league competition. Practitioners could use this detailed quantification of internal loads to inform recovery sessions and current training practices.


2016 ◽  
Vol 11 (8) ◽  
pp. 1080-1087 ◽  
Author(s):  
Amy Brightmore ◽  
John O’Hara ◽  
Kevin Till ◽  
Steve Cobley ◽  
Tate Hubka ◽  
...  

Purpose:To evaluate the movement and physiological demands of Australasian National Rugby League (NRL) referees, officiating with a 2-referee (ie, lead and pocket) system, and to compare the demands of the lead and pocket referees. Methods:Global positioning system devices (10 Hz) were used to obtain 86 data sets (lead, n = 41; pocket, n = 45) on 19 NRL referees. Total distance, relative distance covered, and heart rate per half and across match play were examined within and between referees using t tests. Distance, time, and number of movement “efforts” were examined in 6 velocity classifications (ie, standing <0.5, walking 0.51–2.0, jogging 2.01–4.0, running 4.01–5.5, high-speed running 5.51–7.0, and sprinting >7.0 m/s) using analysis of variance. Cohen d effect sizes are reported. Results:There were no significant differences between the lead and pocket referees for any movement or physiological variable. There was an overall significant (large, very large) effect for distance (% distance) and time (% time) (P < .001) between velocity classifications for both the lead and pocket referees. Both roles covered the largest distance and number of efforts at velocities of 0.51–2.0 m/s and 2.01–4.0 m/s, which were interspersed with efforts >5.51 m/s. Conclusions:Findings highlight the intermittent nature of rugby league refereeing but show that there were no differences in the movement and physiological demands of the 2 refereeing roles. Findings are valuable for those responsible for the preparation, training, and conditioning of NRL referees and to ensure that training prepares for and simulates match demands.


2015 ◽  
Vol 10 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Tom Kempton ◽  
Anita Claire Sirotic ◽  
Ermanno Rampinini ◽  
Aaron James Coutts

Purpose:To describe the metabolic demands of rugby league match play for positional groups and compare match distances obtained from high-speed-running classifications with those derived from high metabolic power.Methods:Global positioning system (GPS) data were collected from 25 players from a team competing in the National Rugby League competition over 39 matches. Players were classified into positional groups (adjustables, outside backs, hit-up forwards, and wide-running forwards). The GPS devices provided instantaneous raw velocity data at 5 Hz, which were exported to a customized spreadsheet. The spreadsheet provided calculations for speed-based distances (eg, total distance; high-speed running, >14.4 km/h; and very-highspeed running, >18.1 km/h) and metabolic-power variables (eg, energy expenditure; average metabolic power; and high-power distance, >20 W/kg).Results:The data show that speed-based distances and metabolic power varied between positional groups, although this was largely related to differences in time spent on field. The distance covered at high running speed was lower than that obtained from high-power thresholds for all positional groups; however, the difference between the 2 methods was greatest for hit-up forwards and adjustables.Conclusions:Positional differences existed for all metabolic parameters, although these are at least partially related to time spent on the field. Higher-speed running may underestimate the demands of match play when compared with high-power distance—although the degree of difference between the measures varied by position. The analysis of metabolic power may complement traditional speed-based classifications and improve our understanding of the demands of rugby league match play.


2013 ◽  
Vol 31 (16) ◽  
pp. 1770-1780 ◽  
Author(s):  
Thomas Kempton ◽  
Anita C. Sirotic ◽  
Matthew Cameron ◽  
Aaron J. Coutts

2020 ◽  
Vol 72 (1) ◽  
pp. 185-194
Author(s):  
Edward J Bradley ◽  
Lisa Board ◽  
Bob Hogg ◽  
David T Archer

AbstractThis study aims were to determine the positional physical requirements of English domestic women’s rugby union match-play. Global positioning system data (Catapult Minimax S4) were collected at 10 Hz of 129 competitive player games from the Tyrrells Premier15 league. Players were classified according to broad (Forwards, Backs) and specific positions (front-, second-, back-row, scrum-half, inside-, and outside-backs). Total distances, maximum speed, and player loads were calculated. Mean total distance was 4982 m and was similar between the Forwards and Backs, with second-row players covering the most (5297 m) and outside-backs the least (4701 m). Inside- and outside-backs covered a significantly greater distance at high speed running (134 m; 178 m) and sprinting (74 m; 92 m) speeds, respectively, whereas the second- and back-row covered greater distances jogging (1966 m; 1976 m) and the front-row spent the greatest overall distance walking (2613 m). Outside-backs reached greater maximum speed than all other positions (24.9 km.h-1). The mean player load was highest in the back-row (562 AU) and second-row (555 AU) and these were higher than the outside-backs (476 AU). These findings indicate that the demands placed on female rugby players are position specific and differ from male players. Additionally, the data are the first obtained from the 10 Hz GPS and from within English domestic women’s rugby, thus adding to the overall limited data available on women’s rugby union.


2019 ◽  
Vol 14 (8) ◽  
pp. 1043-1049
Author(s):  
Rich D. Johnston

Purpose: To explore the relationship between technical errors during rugby league games, match success, and physical characteristics. Methods: A total of 27 semiprofessional rugby league players participated in this study (24.8 [2.5] y, 183.5 [5.3] cm, 97.1 [11.6] kg). Aerobic fitness, strength, and power were assessed prior to the start of the competitive season before technical performance was tracked during 22 competitive fixtures. Attacking errors were determined as any error that occurred in possession of the ball that resulted in a handover to the opposition. Defensive errors included line breaks, penalties, and missed or ineffective tackles. Match outcome, the zone on the field in which each error occurred, and the number of errors in an error chain (≤60 s between errors) were assessed. Results: During a loss, there were more defensive errors in the 0- to 40-m zone than when a match was won (effect size = 0.99 [0.04–1.94]). Error chains were a predictor of conceding a try (P = .0001, r2 = .22), with the odds ratio increasing to 2.33 when there were 7 errors per chain. High lower-body strength was associated with fewer defensive errors for backs (Bayes factor = 3.67) and forwards (Bayes factor = 19.31); relative bench press was also important for backs (Bayes factor = 3.21). Conclusions: Fewer defensive errors occur in the 0- to 40-m zone during winning matches; lower-body strength is strongly associated with fewer defensive errors in rugby league players.


2012 ◽  
Vol 184-185 ◽  
pp. 384-388
Author(s):  
Bing Tian Gao

In order to realize the technical performance of high speed, high precision, high stability and high reliability for conjugated indexing mechanism with periodic intermittent rotary motion, a two cams structure has been designed, and its geometry size and profile curve was carefully determined. Also the calculation formula of the contour curve for CAM was deduced. Research achievement has been applied to new equipment of enterprise development, the working performance is stable and reliable, the production efficiency raised by 30% compared to the domestic industry. The mechanism has characteristics of simplified structure, improved transmission performance and low cost.


Sign in / Sign up

Export Citation Format

Share Document