Effect of ad Libitum Ice-Slurry and Cold-Fluid Ingestion on Cycling Time-Trial Performance in the Heat

2017 ◽  
Vol 12 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Ed Maunder ◽  
Paul B. Laursen ◽  
Andrew E. Kilding

Purpose:To compare the physiological and performance effects of ad libitum cold-fluid (CF) and ice-slurry (IS) ingestion on cycling time-trial (TT) performance in the heat.Methods:Seven well-trained male triathletes and cyclists completed 2 maximaleffort 40-km cycling TTs in hot (35°C) and humid (60% relative humidity) conditions. In randomized order, participants ingested CF or IS (initial temperatures 4°C and –1°C, respectively) ad libitum during exercise. At each 5-km interval, time elapsed, power output, rectal and skin temperature, heart rate, and perceptual measures were recorded. The actual CF and IS temperatures during the 40-km TT were determined post hoc.Results:Performance time (2.5% ± 2.6%, ES = 0.27) and mean power (–2.2% ± 3.2%, ES = –0.15) were likely worse in the IS trial. Differences in thermoregulatory and cardiovascular measures were largely unclear between trials, while feeling state was worse in the later stages of the IS trial (ES = –0.31 to –0.95). Fluid-ingestion volume was very likely lower in the IS trial (–29.7% ± 19.4%, ES = –0.97). The temperatures of CF and IS increased by 0.37°C/min and 0.02°C/min, respectively, over the mean TT duration.Conclusions:Ad libitum ingestion of CF resulted in improved 40-km cycling TT performance compared with IS. Participants chose greater fluid-ingestion rates in the CF trial than in the IS trial and had improved feeling state. These findings suggest that ad libitum CF ingestion is preferable to IS during cycling TTs under conditions of environmental heat stress.

2013 ◽  
Vol 8 (3) ◽  
pp. 307-311 ◽  
Author(s):  
Koen Levels ◽  
Lennart P.J. Teunissen ◽  
Arnold de Haan ◽  
Jos J. de Koning ◽  
Bernadet van Os ◽  
...  

Purpose:The best way to apply precooling for endurance exercise in the heat is still unclear. The authors analyzed the effect of different preparation regimens on pacing during a 15-km cycling time trial in the heat.Methods:Ten male subjects completed four 15-km time trials (30°C), preceded by different preparation regimes: 10 min cycling (WARM-UP), 30 min scalp cooling of which 10 min was cycling (SC+WARM-UP), ice-slurry ingestion (ICE), and ice slurry ingestion + 30 min scalp cooling (SC+ICE).Results:No differences were observed in finish time and mean power output, although power output was lower for WARM-UP than for SC+ICE during km 13–14 (17 ± 16 and 19 ± 14 W, respectively) and for ICE during km 13 (16 ± 16 W). Rectal temperature at the start of the time trial was lower for both ICE conditions (~36.7°C) than both WARMUP conditions (~37.1°C) and remained lower during the first part of the trial. Skin temperature and thermal sensation were lower at the start for SC+ICE.Conclusions:The preparation regimen providing the lowest body-heat content and sensation of coolness at the start (SC+ICE) was most beneficial for pacing during the latter stages of the time trial, although overall performance did not differ.


2020 ◽  
Vol 34 (3) ◽  
pp. 471-481
Author(s):  
Gabriel Barreto ◽  
Rafael Pires da Silva ◽  
Guilherme Yamaguchi ◽  
Luana Farias de Oliveira ◽  
Vitor de Salles Painelli ◽  
...  

Caffeine has been shown to increase anaerobic energy contribution during short-duration cycling time-trials (TT) though no information exists on whether caffeine alters energy contribution during more prolonged, aerobic type TTs. The aim of this study was to determine the effects of caffeine supplementation on longer and predominantly aerobic exercise. Fifteen recreationally-trained male cyclists (age 38±8 y, height 1.76±0.07 m, body mass 72.9±7.7 kg) performed a ~30 min cycling TT following either 6 mg·kg-1BM caffeine (CAF) or placebo (PLA) supplementation, and one control (CON) session without supplementation, in a double- -blind, randomised, counterbalance and cross-over design. Mean power output (MPO) was recorded as the outcome measure. Respiratory values were measured throughout exercise for the determination of energy system contribution. Data were analysed using mixed-models. CAF improved mean MPO compared to CON (P=0.01), and a trend towards an improvement compared to PLA (P=0.07); there was no difference in MPO at any timepoint throughout the exercise between conditions. There was a main effect of Condition (P=0.04) and Time (P<0.0001) on blood lactate concentration, which tended to be higher in CAF vs. both PLA and CON (Condition effect, both P=0.07). Ratings of perceived exertion increased over time (P<0.0001), with no effect of Condition or interaction (both P>0.05). Glycolytic energy contribution was increased in CAF compared to CON and PLA (both P<0.05), but not aerobic or ATP-CP (both P>0.05). CAF improved aerobic TT performance compared to CON, which could be explained by increased glycolytic energy contribution.


2013 ◽  
Vol 23 (2) ◽  
pp. 187-194 ◽  
Author(s):  
Cameron P. Brewer ◽  
Brian Dawson ◽  
Karen E. Wallman ◽  
Kym J. Guelfi

Research into supplementation with sodium phosphate has not investigated the effects of a repeated supplementation phase. Therefore, this study examined the potential additive effects of repeated sodium phosphate (SP) supplementation on cycling time-trial performance and peak oxygen uptake (VO2peak). Trained male cyclists (N = 9, M ± SD VO2peak = 65.2 ± 4.8 ml · kg−1 · min−1) completed baseline 1,000-kJ time-trial and VO2peak tests separated by 48 hr, then ingested either 50 mg · kg fat-free mass−1 · d−1 of tribasic SP or a combined glucose and NaCl placebo for 6 d before performing these tests again. A 14-d washout period separated the end of one loading phase and the start of the next, with 2 SP and 1 placebo phase completed in a counterbalanced order. Although time-trial performance (55.3–56.5 min) was shorter in SP1 and SP2 (~60–70 s), effect sizes and smallest-worthwhile-change values did not differ in comparison with baseline and placebo. However, mean power output was greater than placebo during time-trial performance at the 250-kJ and 500-kJ time points (p < .05) after the second SP phase. Furthermore, mean VO2peak values (p < .01) were greater after the SP1 (3.5–4.3%), with further improvements (p < .01) found in SP2 (7.1–7.7%), compared with baseline and placebo. In summary, repeated SP supplementation, ingested either 15 or 35 d after initial loading, can have an additive effect on VO2peak and possibly time-trial performance.


2010 ◽  
Vol 5 (4) ◽  
pp. 459-468 ◽  
Author(s):  
Jeremiah J. Peiffer ◽  
Chris R. Abbiss

The use of elliptical chainrings (also called chainwheels or sprockets) has gained considerable interest in the amateur and professional cycling community. Nevertheless, we are unaware of any scientific studies that have examined the performance benefits of using elliptical chainrings during an actual performance trial. Therefore, this study examined the influence of elliptical chainring use on physiological and performance parameters during a 10 km cycling time trial. Nine male cyclists completed, in a counterbalanced order, three 10 km cycling time trials using either a standard chainring or an elliptical chainring at two distinct settings. An attempt was made to blind the cyclists to the type of chainring used until the completion of the study. During the 10 km time trial, power output and heart rate were recorded at a frequency of 1 Hz and RPE was measured at 3, 6, and 8.5 km. Total power output was not different (P = .40) between the circular (340 ± 30 W) or either elliptical chainring condition (342 ± 29 W and 341 ± 31 W). Similarly, no differences (P = .73) in 2 km mean power output were observed between conditions. Further, no differences in RPE were observed between conditions measured at 3, 6, and 8.5 km. Heart rate was significantly greater (P = .02) using the less aggressive elliptical setting (174 ± 10 bpm) compared with the circular setting (171 ± 9 bpm). Elliptical chainrings do not appear to provide a performance benefit over traditional circular chainrings during a mid-distance time trial.


2002 ◽  
Vol 12 (4) ◽  
pp. 438-452 ◽  
Author(s):  
Angus M. Hunter ◽  
Allan St ◽  
Clair Gibson ◽  
Malcolm Collins ◽  
Mike Lambert ◽  
...  

This study analyzed the effect of caffeine ingestion on performance during a repeated-measures, 100-km, laboratory cycling time trial that included bouts of 1- and 4-km high intensity epochs (HIE). Eight highly trained cyclists participated in 3 separate trials—placebo ingestion before exercise with a placebo carbohydrate solution and placebo tablets during exercise (Pl), or placebo ingestion before exercise with a 7% carbohydrate drink and placebo tablets during exercise (Cho), or caffeine tablet ingestion before and during exercise with 7% carbohydrate (Caf). Placebo (twice) or 6 mg · kg−1 caffeine was ingested 60 min prior to starting 1 of the 3 cycling trials, during which subjects ingested either additional placebos or a caffeine maintenance dose of 0.33 mg · kg−1 every 15 min to trial completion. The 100-km time trial consisted of five 1-km HIE after 10, 32, 52, 72, and 99 km, as well as four 4-km HIE after 20, 40, 60, and 80 km. Subjects were instructed to complete the time trial and all HIE as fast as possible. Plasma (caffeine) was significantly higher during Caf (0.43 ± 0.56 and 1.11 ± 1.78 mM pre vs. post Pl; and 47.32 ± 12.01 and 72.43 ± 29.08 mM pre vs. post Caf). Average power, HIE time to completion, and 100-km time to completion were not different between trials. Mean heart rates during both the 1-km HIE (184.0 ± 9.8 Caf; 177.0 ± 5.8 Pl; 177.4 ± 8.9 Cho) and 4-km HIE (181.7 ± 5.7 Caf; 174.3 ± 7.2 Pl; 175.6 ± 7.6 Cho; p < .05) was higher in Caf than in the other groups. No significant differences were found between groups for either EMG amplitude (IEMG) or mean power frequency spectrum (MPFS). IEMG activity and performance were not different between groups but were both higher in the 1-km HIE, indicating the absence of peripheral fatigue and the presence of a centrally-regulated pacing strategy that is not altered by caffeine ingestion. Caffeine may be without ergogenic benefit during endurance exercise in which the athlete begins exercise with a defined, predetermined goal measured as speed or distance.


2020 ◽  
Vol 34 (3) ◽  
pp. 471-481
Author(s):  
Gabriel Barreto ◽  
Rafael Pires da Silva ◽  
Guilherme Yamaguchi ◽  
Luana Farias de Oliveira ◽  
Vitor de Salles Painelli ◽  
...  

Caffeine has been shown to increase anaerobic energy contribution during short-duration cycling time-trials (TT) though no information exists on whether caffeine alters energy contribution during more prolonged, aerobic type TTs. The aim of this study was to determine the effects of caffeine supplementation on longer and predominantly aerobic exercise. Fifteen recreationally-trained male cyclists (age 38±8 y, height 1.76±0.07 m, body mass 72.9±7.7 kg) performed a ~30 min cycling TT following either 6 mg·kg-1BM caffeine (CAF) or placebo (PLA) supplementation, and one control (CON) session without supplementation, in a double- -blind, randomised, counterbalance and cross-over design. Mean power output (MPO) was recorded as the outcome measure. Respiratory values were measured throughout exercise for the determination of energy system contribution. Data were analysed using mixed-models. CAF improved mean MPO compared to CON (P=0.01), and a trend towards an improvement compared to PLA (P=0.07); there was no difference in MPO at any timepoint throughout the exercise between conditions. There was a main effect of Condition (P=0.04) and Time (P<0.0001) on blood lactate concentration, which tended to be higher in CAF vs. both PLA and CON (Condition effect, both P=0.07). Ratings of perceived exertion increased over time (P<0.0001), with no effect of Condition or interaction (both P>0.05). Glycolytic energy contribution was increased in CAF compared to CON and PLA (both P<0.05), but not aerobic or ATP-CP (both P>0.05). CAF improved aerobic TT performance compared to CON, which could be explained by increased glycolytic energy contribution.


2013 ◽  
Vol 23 (5) ◽  
pp. 507-512 ◽  
Author(s):  
Angela L. Spence ◽  
Marc Sim ◽  
Grant Landers ◽  
Peter Peeling

Both caffeine (CAF) and pseudoephedrine (PSE) are proposed to be central nervous system stimulants. However, during competition, CAF is a permitted substance, whereas PSE is a banned substance at urinary levels >150 μg·ml−1. As a result, this study aimed to compare the effect of CAF versus PSE use on cycling time trial (TT) performance to explore whether the legal stimulant was any less ergogenic than the banned substance. Here, 10 well-trained male cyclists or triathletes were recruited for participation. All athletes were required to attend the laboratory on four separate occasions—including a familiarization trial and three experimental trials, which required participants to complete a simulated 40 km (1,200 kJ) cycling TT after the ingestion of either 200 mg CAF, 180 mg PSE or a nonnutritive placebo (PLA). The results showed that the total time taken and the mean power produced during each TT was not significantly different (p > .05) between trials, despite a 1.3% faster overall time (~57 s) after CAF consumption. Interestingly, the time taken to complete the second half of the TT was significantly faster (p < .05) in CAF as compared with PSE (by 99 s), with magnitude based inferences suggesting a 91% beneficial effect of CAF during the second half of the TT. This investigation further confirms the ergogenic benefits of CAF use during TT performances and further suggests this legal CNS stimulant has a better influence than a supra-therapeutic dose of PSE.


2007 ◽  
Vol 19 (3) ◽  
pp. 94 ◽  
Author(s):  
AN Bosch ◽  
MC Kirkman

Objectives. The aim of this study was to determine whether the elevated plasma glucose oxidation rate (~ 1.8 g.min-1) in the latter stages of prolonged exercise in subjects in which hyperglycaemia (± 10 mmol.l-1) is maintained via a glucose clamp, improves 100 km cycling time-trial (TT) performance. Design. Seven endurance-trained male cyclists (22±4 yrs) participated in this randomised crossover trial. On two occasions, separated by 7 - 10 days, subjects performed a self-paced TT in the laboratory. During one TT blood glucose was maintained at a euglycaemic concentration of ± 5 mmol.l-1 (ETT) and during the other, at ±10 mmol.l-1 (HTT). Each TT was interspersed with 5 X 1 km high-intensity periods (HIP) and 4 X 4 km HIP, in an attempt to mimic the variable intensity of competitive road races. Subjects were instructed to complete the TT in the ‘fastest time possible', taking the 9 HIP (21 km) into consideration. Results. There were no significant differences between ETT and HTT in overall time (143:09±7:14 v. 142:23±7:16 min:s), mean power (275±39 v. 279±39 W) and heart rate (160±9 v. 158±11 beats.min-1). Conclusion. Time trial performance over 100 km is not improved by maintaining a hyperglycaemic (10 mmol.l-1) blood glucose concentration. South African Journal of Sports Medicine Vol. 19 (3) 2007: pp. 94-98


Sports ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 92 ◽  
Author(s):  
Chris Whittle ◽  
Neal Smith ◽  
Simon Jobson

The use of mobile power measuring devices has become widespread within cycling, with a number of manufacturers now offering power measuring pedals. This study aimed to investigate the validity of PowerTap P1 pedals by comparing them with the previously validated Wattbike ergometer. Ten trained cyclists performed three simulated 10-mile (16-km) time trials on a Wattbike, while using PowerTap P1 pedals. There were no statistically significant differences (p > 0.05) between PowerTap P1 pedals and a Wattbike for maximum, minimum, and mean power output, or for maximum, minimum, and mean cadence. There were good to excellent levels of agreement between the PowerTap P1 pedals and Wattbike (ICC > 0.8) for all measured variables except minimum cadence (ICC = 0.619). This suggests that PowerTap P1 pedals provide a valid measurement of power output.


2015 ◽  
Vol 16 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Meriam A. R. Berkulo ◽  
Susan Bol ◽  
Koen Levels ◽  
Robert P. Lamberts ◽  
Hein A. M. Daanen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document