Stepping to an Auditory Metronome Improves Weight-Bearing Symmetry in Poststroke Hemiparesis

2018 ◽  
Vol 34 (6) ◽  
pp. 469-473
Author(s):  
Rachel L. Wright ◽  
Joseph W. Bevins ◽  
David Pratt ◽  
Catherine M. Sackley ◽  
Alan M. Wing

Asymmetry in weight-bearing is a common feature in poststroke hemiparesis and is related to temporal asymmetry during walking. The aim of this study was to investigate the effect of an auditory cue for stepping in place on measures of temporal and weight-bearing asymmetry. A total of 10 community-dwelling adults (6 males and 4 females) with chronic poststroke hemiparesis performed 5 un-cued stepping trials and 5 stepping trials cued by an auditory metronome cue. A Vicon system was used to collect full body kinematic trajectories. Two force platforms were used to measure ground reaction forces. Step, swing, and stance times were used to calculate temporal symmetry ratios. Weight-bearing was assessed using the vertical component of the ground reaction force and center of mass–center of pressure separation at mid-stance. Weight-bearing asymmetry was significantly reduced during stepping with an auditory cue. Asymmetry values for step, swing, and stance times were also significantly reduced with auditory cueing. These findings show that auditory cueing when stepping in place produces immediate reductions in measures of temporal asymmetry and dynamic weight-bearing asymmetry.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242215
Author(s):  
A. M. van Leeuwen ◽  
J. H. van Dieën ◽  
A. Daffertshofer ◽  
S. M. Bruijn

Step-by-step foot placement control, relative to the center of mass (CoM) kinematic state, is generally considered a dominant mechanism for maintenance of gait stability. By adequate (mediolateral) positioning of the center of pressure with respect to the CoM, the ground reaction force generates a moment that prevents falling. In healthy individuals, foot placement is complemented mainly by ankle moment control ensuring stability. To evaluate possible compensatory relationships between step-by-step foot placement and complementary ankle moments, we investigated the degree of (active) foot placement control during steady-state walking, and under either foot placement-, or ankle moment constraints. Thirty healthy participants walked on a treadmill, while full-body kinematics, ground reaction forces and EMG activities were recorded. As a replication of earlier findings, we first showed step-by-step foot placement is associated with preceding CoM state and hip ab-/adductor activity during steady-state walking. Tight control of foot placement appears to be important at normal walking speed because there was a limited change in the degree of foot placement control despite the presence of a foot placement constraint. At slow speed, the degree of foot placement control decreased substantially, suggesting that tight control of foot placement is less essential when walking slowly. Step-by-step foot placement control was not tightened to compensate for constrained ankle moments. Instead compensation was achieved through increases in step width and stride frequency.


2021 ◽  
Author(s):  
Andrej Olenšek ◽  
Matjaž Zadravec ◽  
Helena Burger ◽  
Zlatko Matjačić

Abstract BackgroundDue to disrupted motor and proprioceptive function lower limb amputation imposes considerable challenges associated with balance and greatly increases risk of falling in case of perturbations during walking. The aim of this study was to investigate dynamic balancing responses in unilateral transtibial amputees when they were subjected to perturbing pushes to the pelvis in outward direction at the time of foot strike on non-amputated and amputated side during slow walking.MethodsFourteen subjects with unilateral transtibial amputation and nine control subjects participated in the study. They were subjected to perturbations that were delivered to the pelvis at the time of foot strike of either the left or right leg. We recorded trajectories of center of pressure and center of mass, durations of in-stance and stepping periods as well as ground reaction forces. Statistical analysis was performed to determine significant differences in dynamic balancing responses between control subjects and subjects with amputation when subjected to outward-directed perturbation upon entering stance phases with non-amputated or amputated side.ResultsWhen outward-directed perturbations were delivered at the time of foot strike of the non-amputated leg, subjects with amputation were able to modulate center of pressure and ground reaction force similarly as control subjects which indicates application of in-stance balancing strategies. On the other hand, there was a complete lack of in-stance response when perturbations were delivered when the amputated leg entered the stance phase. Subjects with amputations instead used the stepping strategy and adjusted placement of the non-amputated leg in the ensuing stance phase to make a cross-step. Such response resulted in significantly higher displacement of center of mass. ConclusionsResults of this study suggest that due to the absence of the COP modulation mechanism, which is normally supplied by ankle motor function, people with unilateral transtibial amputation are compelled to choose the stepping strategy over in-stance strategy when they are subjected to outward-directed perturbation on the amputated side. However, the stepping response is less efficient than in-stance response. To improve their balancing responses to unexpected balance perturbation people fitted with passive transtibial prostheses should undergo perturbation-based balance training during clinical rehabilitation.


Author(s):  
A.M. van Leeuwen ◽  
J.H. van Dieën ◽  
A. Daffertshofer ◽  
S.M. Bruijn

AbstractStep-by-step foot placement control, relative to the center of mass (CoM) kinematic state, is generally considered a dominant mechanism for maintenance of gait stability. By adequate (mediolateral) positioning of the center of pressure with respect to the CoM, the ground reaction force generates a moment that prevents falling. In healthy individuals, foot placement is complemented mainly by ankle moment control ensuring stability. To evaluate possible compensatory relationships between step-by-step foot placement and complementary ankle moments, we investigated the degree of (active) foot placement control during steady-state walking, and under either foot placement-, or ankle moment constraints. Thirty healthy participants walked on a treadmill, while full-body kinematics, ground reaction forces and EMG activities were recorded. As a replication of earlier findings, we first showed step-by-step foot placement is associated with preceding CoM state and hip ab-/adductor activity during steady-state walking. Tight control of foot placement appears to be important at normal walking speed because there was a limited change in the degree of foot placement control despite the presence of a foot placement constraint. At slow speed, the degree of foot placement control decreased substantially, suggesting that tight control of foot placement is less essential when walking slowly. Step-by-step foot placement control was not tightened to compensate for constrained ankle moments. Instead compensation was achieved through increases in step width and stride frequency.


2014 ◽  
Vol 5 (2) ◽  
pp. 37-52 ◽  
Author(s):  
D. S. Mohan Varma ◽  
S. Sujatha

Abstract. An inverse dynamics model for the single support (SS) phase of gait is developed to study segmental contributions to the ground reaction force (GRF). With segmental orientations as the generalized degrees of freedom (DOF), the acceleration of the body's center-of-mass is expressed analytically as the summation of the weighted kinematics of individual segments. The weighting functions are constants that are functions of the segment masses and center-of-mass distances. Using kinematic and anthropometric data from literature as inputs, and using the roll-over-shape (ROS) to model the foot-ground interaction, GRF obtained from the inverse model are compared with measured GRF data from literature. The choice of the generalized coordinates and mathematical form of the model provides a means to weigh individual segment contributions, simplify models and choose more kinetically accurate inverse dynamics models. For the kinematic data used, an anthropomorphic model that includes the frontal plane rotation of the pelvis in addition to the sagittal DOF of the thigh and shank most accurately captures the vertical component of the GRF in the SS phase of walking. Of the two ROS used, the ankle-foot roll-over shape provides a better approximation of the kinetics in the SS phase. The method presented here can be used with additional experimental studies to confirm these results.


2020 ◽  
Author(s):  
Hao-Yuan Hsiao ◽  
Vicki L Gray ◽  
James Borrelli ◽  
Mark W Rogers

Abstract Background: stroke is a leading cause of disability with associated hemiparesis resulting in difficulty bearing and transferring weight on to the paretic limb. Difficulties in weight bearing and weight transfer may result in impaired mobility and balance, increased fall risk, and decreased community engagement. Despite considerable efforts aimed at improving weight transfer after stroke, impairments in its neuromotor and biomechanical control remain poorly understood. In the present study, a novel experimental paradigm was used to characterize differences in weight transfer biomechanics in individuals with chronic stroke versus able-bodied controls. Methods: fifteen participants with stroke and fifteen age-matched able-bodied controls participated in the study. Participants stood with one foot on each of two custom built platforms. One of the platforms dropped 4.3 cm vertically to induce lateral weight transfer and weight bearing. Paretic lower extremity joint kinematics, vertical ground reaction forces, and center of pressure velocity were measured. All participants completed the clinical Step Test and Four-Square Step Test. Results: reduced paretic ankle, knee, and hip joint angular displacement and velocity, delayed ankle and knee inter-joint timing, and altered center of pressure (COP) and center of mass control were exhibited in the stroke group compared to the control group. In addition, paretic COP velocity stabilization time during induced weight transfer predicted Four-Square Step Test scores in individuals post-stroke. Conclusions: the induced weight transfer approach identified stroke-related abnormalities in the control of weight transfer towards the paretic limb side compared to controls. Decreased joint flexion of the paretic ankle and knee, altered inter-joint timing, and altered COP and center of mass control appear to limit rapid lower limb loading ability. Future work will investigate the potential of improving functional weight transfer through induced weight transfer training exercise.


2012 ◽  
Vol 12 (05) ◽  
pp. 1250030 ◽  
Author(s):  
LIN-HWA WANG ◽  
KUO-CHENG LO ◽  
FONG-CHIN SU

The present study investigated the adequacy of the interaction between the center of mass (COM) and the center of pressure (COP) for maintaining dynamic stability during Tai Chi Chuan (TCC) Push Hands movements in a fixed stance. The COM of the whole body and COP were calculated. Four TCC experts, with 10.3 ± 1.7 years' experience in the Push Hands technique, and 4 TCC beginners, with 2.5 ± 1.3 years' Push Hands experience, were recruited. An Expert Vision Eagle motion analysis system collected kinematic data and 4 Kistler force plates collected the ground reaction force data. The expert group of TCC practitioners showed a significantly more vertical (P = 0.001) direction in the neutralizing circle, and significantly larger values for anterior–posterior (A–P) (P = 0.006) and vertical (P = 0.0004) displacement in the enticing circle, than the beginner group. Compared with the beginner group, the expert group demonstrated significantly greater velocity A–P (P = 0.001) and vertical (P = 0.001) COM displacements in the enticing circle. A significant extent main effect (P = 0.0028) was observed for the COPA–P excursion between the expert and beginner groups during Push Hands movements. The greater A–P force generated by both groups during the initiation of the Push Hands cycle probably reflects the more rapid and forward-oriented nature of this movement. The TCC beginners might have difficulties with movement transfers because of disruptions in the temporal sequencing of the forces. Overall, results indicated that the initial experience-related differences in COM transfers are reflected in the Push Hands movement cycle.


2002 ◽  
Vol 82 (6) ◽  
pp. 566-577 ◽  
Author(s):  
Matthew Martin ◽  
Mindi Shinberg ◽  
Maggie Kuchibhatla ◽  
Laurie Ray ◽  
James J Carollo ◽  
...  

Abstract Background and Purpose. Initiation of gait requires transitions from relatively stationary positions to stability with movement and from double- to single-limb stances. These are deliberately destabilizing activities that may be difficult for people with early Parkinson disease (PD), even when they have no problems with level walking. We studied differences in postural stability during gait initiation between participants with early and middle stages of PD (characterized by Hoehn and Yahr as stages 1–3) and 2 other groups of participants without PD—older and younger adults. Subjects. The mean ages of the 3 groups of participants were as follows: subjects with PD, 69.3 years (SD=5.7, range=59–78); older subjects without PD, 69.0 years (SD=3.9, range=65–79); and younger subjects without PD, 27.5 (SD=3.9, range=22–35). Methods. A 3-dimensional motion analysis system was used with 2 force platforms to obtain data for center of mass (COM) and center of pressure (COP). The distance between the vertical projections of the COM and the COP (COM–COP distance) was used to reflect postural control during 5 events in gait initiation. Results. By use of multivariate analysis of variance, differences in COM–COP distance were found among the 3 groups. An analysis of variance indicated differences for 4 of the 5 events in gait initiation. A Scheffe post hoc analysis demonstrated differences in gait initiation between the subjects with PD and both groups of subjects without PD (2 events) and between the subjects with PD and the younger subjects without PD (2 events). Discussion and Conclusion. The COM–COP distance relationship was used to measure postural control during the transition from quiet standing to steady-state gait. Differences between groups indicated that individuals with impaired postural control allow less COM–COP distance than do individuals with no known neurologic problems. The method used could prove useful in the development and assessment of interventions to improve ambulation safety and enhance the independence of people with impaired postural control.


2021 ◽  
Author(s):  
Anina Moira van Leeuwen ◽  
Jaap H van Dieen ◽  
Andreas Daffertshofer ◽  
Sjoerd M Bruijn

During steady-state walking mediolateral gait stability can be maintained by controlling the center of pressure (CoP). The CoP modulates the moment of the ground reaction force, which brakes and reverses movement of the center of mass (CoM) towards the lateral border of the base of support. In addition to foot placement, ankle moments serve to control the CoP. We hypothesized that, during steady-state walking, single stance ankle moments establish a CoP shift to correct for errors in foot placement. We expected ankle muscle activity to be associated with this complementary CoP shift. During treadmill walking, full-body kinematics, ground reaction forces and electromyography were recorded in thirty healthy participants. We found a negative relationship between preceding foot placement error and CoP displacement during single stance. Too medial steps were compensated for by a lateral CoP shift and vice versa, too lateral steps were compensated for by a medial CoP shift. Peroneus longus, soleus and tibialis anterior activity correlated with these CoP shifts. As such, we identified an (active) ankle strategy during steady-state walking. As expected, absolute explained CoP variance by foot placement error decreased when walking with shoes constraining ankle moments. Yet, contrary to our expectations that ankle moment control would compensate for constrained foot placement, the absolute explained CoP variance by foot placement error did not increase when foot placement was constrained. We argue that this lack of compensation reflects the interdependent nature of ankle moment and foot placement control. We suggest that single stance ankle moments do not only compensate for preceding foot placement errors, but also assist control of the subsequent foot placement. Foot placement and ankle moment control are caught in a circular relationship, in which constraints imposed on one will also influence the other.


Author(s):  
Andrej Olenšek ◽  
Matjaž Zadravec ◽  
Helena Burger ◽  
Zlatko Matjačić

Abstract Background Due to disrupted motor and proprioceptive function, lower limb amputation imposes considerable challenges associated with balance and greatly increases risk of falling in presence of perturbations during walking. The aim of this study was to investigate dynamic balancing responses in unilateral transtibial amputees when they were subjected to perturbing pushes to the pelvis in outward direction at the time of foot strike on their non-amputated and amputated side during slow walking. Methods Fourteen subjects with unilateral transtibial amputation and nine control subjects participated in the study. They were subjected to perturbations that were delivered to the pelvis at the time of foot strike of either the left or right leg. We recorded trajectories of center of pressure and center of mass, durations of in-stance and stepping periods as well as ground reaction forces. Statistical analysis was performed to determine significant differences in dynamic balancing responses between control subjects and subjects with amputation when subjected to outward-directed perturbation upon entering stance phases on their non-amputated or amputated sides. Results When outward-directed perturbations were delivered at the time of foot strike of the non-amputated leg, subjects with amputation were able to modulate center of pressure and ground reaction force similarly as control subjects which indicates application of in-stance balancing strategies. On the other hand, there was a complete lack of in-stance response when perturbations were delivered when the amputated leg entered the stance phase. Subjects with amputations instead used the stepping strategy and adjusted placement of the non-amputated leg in the ensuing stance phase to make a cross-step. Such response resulted in significantly larger displacement of center of mass. Conclusions Results of this study suggest that due to the absence of the COP modulation mechanism, which is normally supplied by ankle motor function, people with unilateral transtibial amputation are compelled to choose the stepping strategy over in-stance strategy when they are subjected to outward-directed perturbation on the amputated side. However, the stepping response is less efficient than in-stance response.


2004 ◽  
Vol 92 (2) ◽  
pp. 808-823 ◽  
Author(s):  
Lena H. Ting ◽  
Jane M. Macpherson

This study sought to identify the sensory signals that encode perturbation direction rapidly enough to shape the directional tuning of the automatic postural response. We compared reactions to 16 directions of pitch and roll rotation and 16 directions of linear translation in the horizontal plane in freely standing cats. Rotations and translations that displaced the center of mass in the same direction relative to the feet evoked similar patterns of muscle activity and active ground-reaction force, suggesting the presence of a single, robust postural strategy for stabilizing the center of mass in both rotation and translation. Therefore we postulated there should be a common sensory input that encodes the direction of the perturbation and leads to the directional tuning of the early electromyographic burst in the postural response. We compared the mechanical changes induced by rotations and translations prior to the active, postural response. The only consistent feature common to the full range of rotation and translation directions was the initial change in ground-reaction force angle. Other variables including joint angles, ground-reaction force magnitudes, center of pressure, and center of mass in space showed opposite or nonsignificant changes for rotation and translation. Change in force angle at the paw reflects the ratio of loading force to slip force, analogous to slips during finger grip tasks. We propose that cutaneous sensors in the foot soles detect change in ground-reaction force angle and provide the critical input underlying the directional tuning of the automatic postural response for balance.


Sign in / Sign up

Export Citation Format

Share Document