Three-Dimensional Model to Predict Muscle Forces and Their Relation to Motor Variances in Reaching Arm Movements

2011 ◽  
Vol 27 (4) ◽  
pp. 362-374 ◽  
Author(s):  
Robert Tibold ◽  
Gabor Fazekas ◽  
Jozsef Laczko

A three-dimensional (3-D) arm movement model is presented to simulate kinematic properties and muscle forces in reaching arm movements. Healthy subjects performed reaching movements repetitively either with or without a load in the hand. Joint coordinates were measured. Muscle moment arms, 3-D angular acceleration, and moment of inertias of arm segments were calculated to determine 3-D joint torques. Variances of hand position, arm configuration, and muscle activities were calculated. Ratios of movement variances observed in the two conditions (load versus without load) showed no differences for hand position and arm configuration variances. Virtual muscle force variances for all muscles except deltoid posterior and EMG variances for four muscles increased significantly by moving with the load. The greatly increased variances in muscle activity did not imply equally high increments in kinematic variances. We conclude that enhanced muscle cooperation through synergies helps to stabilize movement at the kinematic level when a load is added.

1989 ◽  
Vol 5 (4) ◽  
pp. 403-419 ◽  
Author(s):  
Michael E. Feltner ◽  
Jesús Dapena

The motion of a body segment is determined by joint torques and by the motions of the segments proximal or distal to it. This paper describes a three-dimensional model that was used to determine the effects of the shoulder and elbow joint torques and of the upper trunk and arm motions on the angular accelerations of the arm segments during baseball pitching. Equations were developed to fractionate the three-dimensional components of the angular acceleration vector of each segment into angular acceleration terms associated with the joint torques made on the segment, and into various “motion-dependent” angular acceleration terms associated with the kinematic variables of the arm segments. Analysis of the values of the various motion-dependent angular acceleration terms permitted the determination of their contributions to the motion of the segment. Although the model was developed to provide further understanding of the mechanics of the throwing arm during baseball pitching, it can be used to analyze any two-segment two-dimensional or three-dimensional motion.


2010 ◽  
Vol 104 (2) ◽  
pp. 949-959 ◽  
Author(s):  
Chloé Thyrion ◽  
Jean-Pierre Roll

Our sense of body posture and movement is mainly mediated by densely packed populations of tiny mechanoreceptors present in the muscles. Signals triggered in muscle spindles by our own actions contribute crucially to our consciousness of positions and movements by continuously feeding and updating dynamic sensorimotor maps. Deciphering the coding rules whereby the nervous system integrates this proprioceptive information perceptually could help to elucidate the mechanisms underlying kinesthesia. The aim of the present study was to test the validity of a “propriomimetic method” of predicting the proprioceptive streams emitted by each of the muscles involved in two- (2D) and three-dimensional (3D) arm movements. This method was based on the functional properties of muscle spindle populations previously recorded microneurographically in behaving humans. Ia afferent patterns mimicking those evoked when the “arm–forearm” ensemble is drawing straight lines, graphic symbols, and complex 3D figures were calculated. These simulated patterns were then delivered to the main elbow and shoulder muscle tendons of motionless volunteers via a set of vibrators. Results show that the simulated proprioceptive patterns applied induced, in passive subjects, illusory 2D and 3D arm movements, the trajectories of which were very similar to the expected ones. These simulated patterns can therefore be said to be a substitute for the Ia proprioceptive feedback evoked by any human arm movement and this method can certainly be extended to other musculoskeletal ensembles. The illusory movements induced when these proprioceptive patterns are applied to muscle groups via sets of vibrators may provide useful tools for sensorimotor rehabilitation purposes.


Author(s):  
Valerie Norman-Gerum ◽  
John McPhee

To better understand the complexities of rising from a seated to a standing position, a model of the human has been created. Sit-to-stand kinematics as well as ground reaction forces were measured experimentally and are used in an inverse dynamics analysis to estimate nine muscle forces during motion. Calculated muscle forces are sensitive to assumptions made when modeling muscle paths. Changes in the line of action of a muscle due to interaction with anatomical constraints are often accounted for by including fixed via points in a model. Here an alternate approach of representing anatomical constraints using three-dimensional cylindrical geometries is derived and presented. In this mathematical model the course of the muscle is determined as the minimum-length path where the muscle is allowed to wrap freely over the surface of the cylinder. Muscle forces are estimated for sit-to-stand by resolving net joint torques using an objective function giving preference to solutions minimizing both muscle stresses and abrupt changes in muscle forces. This is the first time muscle forces have been presented for sit-to-stand using a musculoskeletal model with included anatomical constraints represented using cylindrical wrapping geometries alone. A comparison of calculated muscle force patterns using fixed via points and wrapping points versus three-dimensional wrapping surfaces is made with reference to electromyographic phase data. For the sit-to-stand motion, the inclusion of anatomical constraints as three-dimensional cylindrical geometries results in calculation of muscle forces more true to the experimental data and more consistent with the belief that gradual motions are created by gradual changes in muscle force over time.


2008 ◽  
Vol 41 (3) ◽  
pp. 610-619 ◽  
Author(s):  
Will L. Johnson ◽  
Devin L. Jindrich ◽  
Roland R. Roy ◽  
V. Reggie Edgerton

2005 ◽  
Vol 94 (6) ◽  
pp. 4209-4223 ◽  
Author(s):  
Michael S. A. Graziano ◽  
Tyson N. S. Aflalo ◽  
Dylan F. Cooke

Electrical stimulation of the motor cortex in monkeys can evoke complex, multijoint movements including movements of the arm and hand. In this study, we examined these movements in detail and tested whether they showed adaptability to differing circumstances such as to a weight added to the hand. Electrical microstimulation was applied to motor cortex using pulse trains of 500-ms duration (matching the approximate duration of a reach). Arm movement was measured using a high-resolution three-dimensional tracking system. Movement latencies averaged 80.2 ms. Speed profiles were typically smooth and bell-shaped, and the peak speed covaried with movement distance. Stimulation generally evoked a specific final hand position. The convergence of the hand from disparate starting positions to a narrow range of final positions was statistically significant for every site tested (91/91). When a weight was fixed to the hand, for some stimulation sites (74%), the evoked movement appeared to compensate for the weight in that the hand was lifted to a similar final location. For other stimulation sites (26%), the weight caused a significant reduction in final hand height. For about one-half of the sites (54%), the variation in movement of each joint appeared to compensate for the variation in the other joints in a manner that stabilized the hand in a restricted region of space. These findings suggest that at least some of the stimulation-evoked movements reflect relatively high-level, adaptable motor plans.


1985 ◽  
Vol 60 (1) ◽  
pp. 203-228 ◽  
Author(s):  
Lucia Vaina ◽  
Youcef Bennour

A representation for the visual recognition of skilled arm movements is proposed that lies within Mart and Vaina's (1982) three-dimensional model representation for shape movements. Algorithms for segmenting arm movements into pieces are proposed. It is suggested that for a large class of arm movements recognition could be reliably achieved based only on the description of the hand shape and path in the body coordinates, without needing the detailed description of the variation of all the joint angles of the arm.


1989 ◽  
Vol 5 (4) ◽  
pp. 420-450 ◽  
Author(s):  
Michael E. Feltner

Fastball pitches of eight collegiate baseball pitchers were filmed using the Direct Linear Transformation (DLT) method of three-dimensional (3D) cinematography. Coordinate data were obtained, and the model developed by Feltner and Dapena (1989) was used to fractionate the 3D angular acceleration of the upper arm and distal segment (the forearm, the hand, and prior to release, the baseball) of the throwing arm into terms associated with the joint torques exerted on the segments and the kinematic variables used to define the motions of the segments. The findings indicated that the extreme external rotation of the upper arm during the pitch was due mainly to the sequential actions of the horizontal adduction and abduction muscles at the shoulder. The study also found that the rapid elbow extension prior to ball release was due primarily to the counterclockwise angular velocity of the upper arm and trunk (viewed from above) that occurred during the pitch, and not to the elbow extensor muscles.


2016 ◽  
Vol 32 (5) ◽  
pp. 487-503 ◽  
Author(s):  
Elena J. Caruthers ◽  
Julie A. Thompson ◽  
Ajit M.W. Chaudhari ◽  
Laura C. Schmitt ◽  
Thomas M. Best ◽  
...  

Sit-to-stand transfer is a common task that is challenging for older adults and others with musculoskeletal impairments. Associated joint torques and muscle activations have been analyzed two-dimensionally, neglecting possible three-dimensional (3D) compensatory movements in those who struggle with sit-to-stand transfer. Furthermore, how muscles accelerate an individual up and off the chair remains unclear; such knowledge could inform rehabilitation strategies. We examined muscle forces, muscleinduced accelerations, and interlimb muscle force differences during sit-to-stand transfer in young, healthy adults. Dynamic simulations were created using a custom 3D musculoskeletal model; static optimization and induced acceleration analysis were used to determine muscle forces and their induced accelerations, respectively. The gluteus maximus generated the largest force (2009.07 ± 277.31 N) and was a main contributor to forward acceleration of the center of mass (COM) (0.62 ± 0.18 m/s2), while the quadriceps opposed it. The soleus was a main contributor to upward (2.56 ± 0.74 m/s2) and forward acceleration of the COM (0.62 ± 0.33 m/s2). Interlimb muscle force differences were observed, demonstrating lower limb symmetry cannot be assumed during this task, even in healthy adults. These findings establish a baseline from which deficits and compensatory strategies in relevant populations (eg, elderly, osteoarthritis) can be identified.


2015 ◽  
Vol 28 (5-6) ◽  
pp. 487-505 ◽  
Author(s):  
Jean Blouin ◽  
Jean-Pierre Bresciani ◽  
Etienne Guillaud ◽  
Martin Simoneau

The contribution of vestibular signals to motor control has been evidenced in postural, locomotor, and oculomotor studies. Here, we review studies showing that vestibular information also contributes to the control of arm movements during whole-body motion. The data reviewed suggest that vestibular information is used by the arm motor system to maintain the initial hand position or the planned hand trajectory unaltered during body motion. This requires integration of vestibular and cervical inputs to determine the trunk motion dynamics. These studies further suggest that the vestibular control of arm movement relies on rapid and efficient vestibulomotor transformations that cannot be considered automatic. We also reviewed evidence suggesting that the vestibular afferents can be used by the brain to predict and counteract body-rotation-induced torques (e.g., Coriolis) acting on the arm when reaching for a target while turning the trunk.


Sign in / Sign up

Export Citation Format

Share Document