Comparison of Biomechanical Factors between the Kicking and Stance Limbs

2004 ◽  
Vol 13 (2) ◽  
pp. 135-150 ◽  
Author(s):  
Scott Ross ◽  
Kevin Guskiewicz ◽  
William Prentice ◽  
Robert Schneider ◽  
Bing Yu

Objective:T o determine differences between contralateral limbs’ strength, proprio-ception, and kinetic and knee-kinematic variables during single-limb landing.Setting:Laboratory.Subjects:30.Measurements:Hip, knee, and foot isokinetic peak torques; anterior/posterior (AP) and medial/lateral (ML) sway displacements during a balance task; and stabilization times, vertical ground-reaction force (VGRF), time to peak VGRF, and knee-flexion range of motion (ROM) from initial foot contact to peak VGRF during single-limb landing.Results:The kicking limb had significantly greater values for knee-extension (P= .008) and -flexion (P= .047) peak torques, AP sway displacement (P= .010), knee-flexion ROM from initial foot contact to peak VGRF (P< .001), and time to peak VGRF (P= .004). No other dependent measures were significantly different between limbs (P> .05).Conclusion:The kicking limb had superior thigh strength, better proprioception, and greater knee-flexion ROM than the stance limb.

2021 ◽  
pp. 1-8
Author(s):  
Jihong Park ◽  
Kyeongtak Song ◽  
Sae Yong Lee

Context: It is unclear if lower-extremity joint cooling alters biomechanics during a functional movement. Objective: To investigate the effects of unilateral lower-extremity cryotherapy on movement alterations during a single-leg drop jump. Design: A crossover design. Setting: Laboratory. Patients: Twenty healthy subjects (10 males and 10 females; 23 y, 169 cm, 66 kg). Intervention(s): Subjects completed a single-leg drop jump before and after a 20-minute ankle or knee joint cooling on the right leg, or control (seated without cooling) on 3 separate days. Main Outcome Measures: Time to peak knee flexion, vertical ground reaction force, lower-extremity joint angular velocity (sagittal plane only), and angle and moment (sagittal and frontal planes) in the involved leg over the entire ground contact (GC; from initial contact to jump-off) during the first landing. Time to peak knee flexion was compared using an analysis of variance; the rest of the outcome measures were analyzed using functional analyses of variance (P < .05). Results: Neither joint cooling condition changed the time to peak knee flexion (F2,95 = 0.73, P = .49). Ankle joint cooling reduced vertical ground reaction force (55 N at 4% of GC), knee joint angular velocity (44°/s during 5%–9% of GC), and knee varus moment (181 N·m during 18%–20% of GC). Knee joint cooling resulted in a reduction in knee joint angular velocity (24°/s during 37%–40% of GC) and hip adduction moment (151 N·m during 46%–48% of GC), and an increase in hip joint angular velocity (16°/s during 49%–53% of GC) and plantarflexion angle (1.5° during 11%–29% of GC). Conclusion: Resuming activity immediately after lower-extremity joint cooling does not seem to predispose an individual to injury during landing because altered mechanics are neither overlapping with the injury time period nor of sufficient magnitude to lead to an injury.


2019 ◽  
Vol 47 (11) ◽  
pp. 2608-2616 ◽  
Author(s):  
Matthew P. Ithurburn ◽  
Mark V. Paterno ◽  
Staci Thomas ◽  
Michael L. Pennell ◽  
Kevin D. Evans ◽  
...  

Background: While between-limb landing asymmetries after anterior cruciate ligament reconstruction (ACLR) are linked with poor function and risk of additional injury, it is not currently understood how landing symmetry changes over time after ACLR. Purpose/Hypothesis: The purpose was to investigate how double-legged drop vertical jump (DVJ) landing and single-legged drop-landing symmetry changed from the time of return-to-sport (RTS) clearance to 2 years later in a prospective cohort of young athletes after ACLR. It was hypothesized that double-legged DVJ landing and single-legged drop-landing symmetry would improve from the time of RTS to 2 years later. Study Design: Descriptive laboratory study. Methods: The authors followed 64 young athletes with primary, unilateral ACLR for 2 years after RTS clearance. At the time of RTS and 2 years later, between-limb symmetry values for biomechanical variables of interest (VOIs) were calculated with 3-dimensional motion analysis during double-legged DVJ and single-legged drop-landing tasks. VOIs included knee flexion excursion, peak internal knee extension moment, peak vertical ground-reaction force, and peak trunk flexion (for single-legged task only). Symmetry values and proportions of participants meeting 90% symmetry cutoffs were compared between time points. Results: For double-legged DVJ landing, symmetry values for all VOIs and the proportions meeting 90% cutoffs for peak internal knee extension moment and peak vertical ground-reaction force were higher at 2 years after RTS as compared with RTS. For single-legged drop-landing, symmetry values were higher for knee flexion excursion and lower for peak trunk flexion at 2 years after RTS as compared with RTS, but the proportions meeting 90% cutoffs for all VOIs did not differ between time points. Conclusion: Double-legged DVJ landing symmetry improved across VOIs over the 2 years after RTS following ACLR, while single-legged drop-landing did not improve as consistently. The implications of longitudinal landing asymmetry after ACLR should be further studied.


1997 ◽  
Vol 25 (4) ◽  
pp. 236-244 ◽  
Author(s):  
Thomas M. Cook ◽  
Kevin P. Farrell ◽  
Iva A. Carey ◽  
Joan M. Gibbs ◽  
Gregory E. Wiger

Author(s):  
Chi-Yin Tse ◽  
Hamid Nayeb-Hashemi ◽  
Ashkan Vaziri ◽  
Paul K. Canavan

The pathomechanics of knee anterior cruciate ligament (ACL) injury related to the female athlete is of high interest due to the high incidence of injury compared to males participating in the same sport. The mechanisms of ACL injury are still not completely understood, but it is known that single-leg landings, stopping and cutting at high velocity are some of the non-contact mechanisms that are causing these injuries. This study analyzed a subject specific analysis of a single-leg drop landing that was performed by a female subject at 60%, 80% and 100% of her maximum vertical jump. The femur, tibia, articular cartilage, and menisci were modeled as 3-D structures and the data collected from the motion analysis was used to obtain the knee joint contact stresses in finite element analysis (FEA). The four major ligaments of the knee were modeled as non-linear springs. Material properties of previously published studies were used to define the soft tissue structures. The articular cartilage was defined as isotropic elastic and the menisci were defined as transverse isotropic elastic. Two different styles of single-leg landings were compared to one another, resembling landing from a basketball rebound. The first landing style, single-leg arms up (SLAU), produced larger knee flexion angles at peak ground reaction forces, while single-leg arms across (SLAX) landings produced higher peak vertical ground reaction forces along with lower knee flexion angles. The mean peak vertical ground reaction force was 2.9–3.5 bodyweight for SLAU landings, while they were 3.0–3.8 for SLAX landings. The time to peak vertical ground reaction force with SLAU landings were 69 ms (60%), 60 ms (80%), and 55 ms (100%); SLAX landings were 61 ms (60%), 61 ms (80%), and 51 ms (100%).


Author(s):  
Chi-Yin Tse ◽  
Hamid Nayeb-Hashemi ◽  
Ashkan Vaziri ◽  
Paul K. Canavan

A single-leg landing is a common type of high-risk maneuver performed by athletes. The majority of anterior cruciate ligament injury is accounted for by non-contact mechanisms, such as single-leg landings. The purpose of this study was to develop a subject specific single-leg drop landing to analyze the kinematics and kinetics of two different types of landings. Kinematic data was analyzed at five points during the landing phase: initial contact (IC), peak vertical ground reaction force (pVGRF), peak joint reaction force (pJRF), maximum knee flexion (MKF), and maximum valgus angle (MFP). A linear relationship was noted in comparing the average maximum peak vertical ground reaction force, average maximum knee flexion, and average maximum valgus angle to the platform heights in both landing styles. An increase in platform height was directly related to increased knee valgus angle in both landing styles. Significant difference (p < 0.05) was noted in the peak vertical ground reaction force between the 60% and 80% platform heights, as well as between 60% and 100% with arms above. Landing with arms across the body yielded more significant difference (p < 0.05) between platform heights in both frontal and sagittal planes. However, comparing both landing styles to each other only yielded significant difference (p < 0.05) at the 100% platform height. A valgus-varus-valgus movement was observed in all landings, and is a probable contributor to single-leg landing ACL ruptures.


2020 ◽  
Vol 25 (1) ◽  
pp. 27-30
Author(s):  
Erik A. Wikstrom ◽  
Kyeongtak Song ◽  
Kimmery Migel ◽  
Chris J. Hass

Aberrant loading is a mechanism by which individuals with chronic ankle instability (CAI) may negatively impact cartilage health and therefore long-term health outcomes. We aimed to quantify walking vertical ground reaction force (vGRF) component differences between those with and without CAI. Participants (n = 36) walked barefoot overground at a self-selected comfortable pace. Normalized peak vGRF, time to peak vGRF, and normalized loading rate were calculated. Higher normalized loading rates (CAI: 5.69 ± 0.62 N/BW/s; controls: 5.30 ± 0.44 N/BW/s, p = .034) and less time to peak vGRF (CAI: 1.48 ± 0.18 s; controls: 1.62 ± 0.16 s, p = .018) were observed in those with CAI. In conclusion, those with CAI demonstrate a higher normalized loading rate and less time to peak vGRF compared to controls.


2012 ◽  
Vol 47 (1) ◽  
pp. 32-41 ◽  
Author(s):  
David Quammen ◽  
Nelson Cortes ◽  
Bonnie L. Van Lunen ◽  
Shawn Lucci ◽  
Stacie I. Ringleb ◽  
...  

Context: Altered neuromuscular control strategies during fatigue probably contribute to the increased incidence of non-contact anterior cruciate ligament injuries in female athletes. Objective: To determine biomechanical differences between 2 fatigue protocols (slow linear oxidative fatigue protocol [SLO-FP] and functional agility short-term fatigue protocol [FAST-FP]) when performing a running-stop-jump task. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: A convenience sample of 15 female soccer players (age = 19.2 ±0.8 years, height = 1.67±0.05m, mass = 61.7 + 8.1 kg) without injury participated. Intervention(s): Five successful trials of a running–stop-jump task were obtained prefatigue and postfatigue during the 2 protocols. For the SLO-FP, a peak oxygen consumption (V˙o2peak) test was conducted before the fatigue protocol. Five minutes after the conclusion of the V˙o2peak test, participants started the fatigue protocol by performing a 30-minute interval run. The FAST-FP consisted of 4 sets of a functional circuit. Repeated 2 (fatigue protocol) × 2 (time) analyses of variance were conducted to assess differences between the 2 protocols and time (prefatigue, postfatigue). Main Outcome Measure(s): Kinematic and kinetic measures of the hip and knee were obtained at different times while participants performed both protocols during prefatigue and postfatigue. Results: Internal adduction moment at initial contact (IC) was greater during FAST-FP (0.064 ±0.09 Nm/kgm) than SLO-FP (0.024±0.06 Nm/kgm) (F1,14 = 5.610, P=.03). At IC, participants had less hip flexion postfatigue (44.7°±8.1°) than prefatigue (50.1°±9.5°) (F1,14 = 16.229, P=.001). At peak vertical ground reaction force, participants had less hip flexion postfatigue (44.7°±8.4°) than prefatigue (50.4°±10.3°) (F1,14 = 17.026, P=.001). At peak vertical ground reaction force, participants had less knee flexion postfatigue (−35.9°±6.5°) than prefatigue (−38.8°±5.03°) (F1,14 = 11.537, P=.001). Conclusions: Our results demonstrated a more erect landing posture due to a decrease in hip and knee flexion angles in the postfatigue condition. The changes were similar between protocols; however, the FAST-FP was a clinically applicable 5-minute protocol, whereas the SLO-FP lasted approximately 45 minutes.


2020 ◽  
pp. 1-9
Author(s):  
Louis Howe ◽  
Jamie S. North ◽  
Mark Waldron ◽  
Theodoros M. Bampouras

Context: Ankle dorsiflexion range of motion (DF ROM) has been associated with a number of kinematic and kinetic variables associated with landing performance that increase injury risk. However, whether exercise-induced fatigue exacerbates compensatory strategies has not yet been established. Objectives: (1) Explore differences in landing performance between individuals with restricted and normal ankle DF ROM and (2) identify the effect of fatigue on compensations in landing strategies for individuals with restricted and normal ankle DF ROM. Design: Cross-sectional. Setting: University research laboratory. Patients or Other Participants: Twelve recreational athletes with restricted ankle DF ROM (restricted group) and 12 recreational athletes with normal ankle DF ROM (normal group). Main Outcome Measure(s): The participants performed 5 bilateral drop-landings, before and following a fatiguing protocol. Normalized peak vertical ground reaction force, time to peak vertical ground reaction force, and loading rate were calculated, alongside sagittal plane initial contact angles, peak angles, and joint displacement for the ankle, knee, and hip. Frontal plane projection angles were also calculated. Results: At the baseline, the restricted group landed with significantly less knee flexion (P = .005, effect size [ES] = 1.27) at initial contact and reduced peak ankle dorsiflexion (P < .001, ES = 1.67), knee flexion (P < .001, ES = 2.18), and hip-flexion (P = .033, ES = 0.93) angles. Sagittal plane joint displacement was also significantly less for the restricted group for the ankle (P < .001, ES = 1.78), knee (P < .001, ES = 1.78), and hip (P = .028, ES = 0.96) joints. Conclusions: These findings suggest that individuals with restricted ankle DF ROM should adopt different landing strategies than those with normal ankle DF ROM. This is exacerbated when fatigued, although the functional consequences of fatigue on landing mechanics in individuals with ankle DF ROM restriction are unclear.


Sign in / Sign up

Export Citation Format

Share Document