Posttetanic Potentiation in Knee Extensors after High-Frequency Submaximal Percutaneous Electrical Stimulation

2005 ◽  
Vol 14 (3) ◽  
pp. 249-257 ◽  
Author(s):  
Bernardo Requena ◽  
Jaan Ereline ◽  
Helena Gapeyeva ◽  
Mati Pääsuke

Context:The understanding of posttetanic potentiation (PTP) in human muscles induced by percutaneous electrical stimulation (PES) is important for effective application of electrical stimulation in rehabilitation.Objective:To examine the effect of 7-second high-frequency (100-Hz) submaximal (25% of maximal voluntary contraction force) direct PES on contractile characteristics of the knee-extensor (KE) muscles.Design:Single-group repeated measures.Setting:Kinesiology laboratory.Subjects:13 healthy men age 18–27 years.Measurement:Peak force (PF), maximal rates of force development (RFD) and relaxation (RR) of supramaximal twitch, and PF of doublet and 10-Hz tetanic contractions before and after direct tetanic PES.Results:A significant potentiation of twitch, doublet, and 10-Hz tetanic-contraction PF has been observed at 1–5 minutes posttetanic. Twitch RFD and RR were markedly potentiated throughout the 10-minute posttetanic period.Conclusions:A brief high-frequency submaximal tetanic PES induces PTP in KE muscles associated with small increase at 1–5 minutes.

2001 ◽  
Vol 10 (4) ◽  
pp. 298-307 ◽  
Author(s):  
Helena Gapeyeva ◽  
Mati Pääsuke ◽  
Jaan Ereline ◽  
Vallo Vaher ◽  
Aivar Pintsaar ◽  
...  

Context:Contractile characteristics of the knee extensors after arthroscopic meniscectomy are poorly understood.Objective:To measure the recovery of knee-extensor-muscle contractility after arthroscopic partial meniscectomy.Design:Single-group repeated measures.Setting:Kinesiology and biomechanics laboratory.Subjects:Fourteen patients with arthroscopic partial medial meniscectomies.Main Outcome Measures:Maximal isometric voluntary contraction (MVC) force, rate of force development (MRFDES), and half-relaxation time (HRTES) of evoked tetanic contraction preoperatively and during 6 months postoperatively.Results:Two weeks postoperatively, a reduction in MVC force of 27.1% and in MRFDESof 17.8% and a prolongation of HRTESof 34.0% in the injured leg were found. A significant MVC-force deficit (17.5%) was observed 3 months postoperatively.Conclusions:The recovery of knee-extensor-muscle voluntary strength is more delayed than are evoked tetanic-contractile characteristics after partial meniscectomy. The rehabilitation protocol seems to be insufficient to attain effective recovery of knee-extensor-muscle voluntary strength.


2017 ◽  
Vol 12 (10) ◽  
pp. 1335-1340 ◽  
Author(s):  
Daria Neyroud ◽  
Jimmy Samararatne ◽  
Bengt Kayser ◽  
Nicolas Place

Purpose:To evaluate the etiology and extent of neuromuscular fatigue induced by 50 squat jumps performed with and without neuromuscular electrical stimulation (NMES) of the knee extensors.Methods:Nine healthy, recreationally active men (24 ± 2 y) took part in 2 experiments. These consisted of 50 squat jumps performed with stimulation (NMES) or without (CON). Maximal voluntary contraction (MVC) force, maximal voluntary activation level (VAL), and forces evoked by single and double (10 and 100 Hz) stimulations were recorded before and after the 50 jumps. NMES was delivered at the maximal tolerated intensity.Results:Despite average jump height being ∼16% lower in the NMES than in the CON session, a reduction over time in jump height was only found in the NMES condition (−6%). After the 50 jumps, MVC force was reduced to a greater extent in NMES than in CON (−25% ± 11% vs −11% ± 12%). Similarly, forces evoked by single stimulations, as well as by 10-Hz and 100-Hz paired stimulations, were reduced to a greater extent in NMES (−33% ± 12%, −42% ± 15%, and −25% ± 13%) than in CON (−21% ± 6%, −30% ± 9%, and −14% ± 11%). VAL was not significantly altered by either condition.Conclusion:Performing repeated squat jumps with concomitant NMES induced a greater fatigue than squat jumps performed alone and might potentially represent a stronger training stimulus.


Author(s):  
Amandine Bouguetoch ◽  
Alain Martin ◽  
Sidney Grosprêtre

Abstract Introduction Training stimuli that partially activate the neuromuscular system, such as motor imagery (MI) or neuromuscular electrical stimulation (NMES), have been previously shown as efficient tools to induce strength gains. Here the efficacy of MI, NMES or NMES + MI trainings has been compared. Methods Thirty-seven participants were enrolled in a training program of ten sessions in 2 weeks targeting plantar flexor muscles, distributed in four groups: MI, NMES, NMES + MI and control. Each group underwent forty contractions in each session, NMES + MI group doing 20 contractions of each modality. Before and after, the neuromuscular function was tested through the recording of maximal voluntary contraction (MVC), but also electrophysiological and mechanical responses associated with electrical nerve stimulation. Muscle architecture was assessed by ultrasonography. Results MVC increased by 11.3 ± 3.5% in NMES group, by 13.8 ± 5.6% in MI, while unchanged for NMES + MI and control. During MVC, a significant increase in V-wave without associated changes in superimposed H-reflex has been observed for NMES and MI, suggesting that neural adaptations occurred at supraspinal level. Rest spinal excitability was increased in the MI group while decreased in the NMES group. No change in muscle architecture (pennation angle, fascicle length) has been found in any group but muscular peak twitch and soleus maximal M-wave increased in the NMES group only. Conclusion Finally, MI and NMES seem to be efficient stimuli to improve strength, although both exhibited different and specific neural plasticity. On its side, NMES + MI combination did not provide the expected gains, suggesting that their effects are not simply cumulative, or even are competitive.


2019 ◽  
Vol 44 (8) ◽  
pp. 827-833 ◽  
Author(s):  
Tommy R. Lundberg ◽  
Maria T. García-Gutiérrez ◽  
Mirko Mandić ◽  
Mats Lilja ◽  
Rodrigo Fernandez-Gonzalo

This study compared the effects of the most frequently employed protocols of flywheel (FW) versus weight-stack (WS) resistance exercise (RE) on regional and muscle-specific adaptations of the knee extensors. Sixteen men (n = 8) and women (n = 8) performed 8 weeks (2–3 days/week) of knee extension RE employing FW technology on 1 leg (4 × 7 repetitions), while the contralateral leg performed regular WS training (4 × 8–12 repetitions). Maximal strength (1-repetition maximum (1RM) in WS) and peak FW power were determined before and after training for both legs. Partial muscle volume of vastus lateralis (VL), vastus medialis (VM), vastus intermedius (VI), and rectus femoris (RF) were measured using magnetic resonance imaging. Additionally, quadriceps cross-sectional area was assessed at a proximal and a distal site. There were no differences (P > 0.05) between FW versus WS in muscle hypertrophy of the quadriceps femoris (8% vs. 9%), VL (10% vs. 11%), VM (6% vs. 8%), VI (5% vs. 5%), or RF (17% vs. 17%). Muscle hypertrophy tended (P = 0.09) to be greater at the distal compared with the proximal site, but there was no interaction with exercise method. Increases in 1RM and FW peak power were similar across legs, yet the increase in 1RM was greater in men (31%) than in women (20%). These findings suggest that FW and WS training induces comparable muscle-specific hypertrophy of the knee extensors. Given that these robust muscular adaptations were brought about with markedly fewer repetitions in the FW compared with WS, it seems FW training can be recommended as a particularly time-efficient exercise paradigm.


2004 ◽  
Vol 97 (6) ◽  
pp. 2121-2131 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara ◽  
Kei Masani ◽  
Tetsuo Fukunaga

The study examined the hypothesis that altered synergistic activation of the knee extensors leads to cyclic modulation of the force fluctuations. To test this hypothesis, the force fluctuations were investigated during sustained knee extension at 2.5% of maximal voluntary contraction force for 60 min in 11 men. Surface electromyograms (EMG) were recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles. The SD of force and average EMG (AEMG) of each muscle were calculated for 30-s periods during alternate muscle activity. Power spectrum of force was calculated for the low- (≤3 Hz), middle- (4–6 Hz), and high-frequency (8–12 Hz) components. Alternate muscle activity was observed between RF and the set of VL and VM muscles. The SD of force was not constant but variable due to the alternate muscle activity. The SD was significantly greater during high RF activity compared with high VL and VM activity ( P < 0.05), and the correlation coefficient between the SD and AEMG was significantly greater in RF [0.736 (SD 0.095), P < 0.05] compared with VL and VM. Large changes were found in the high-frequency component. During high RF activity, the correlation coefficient between the SD and high-frequency component [0.832 (SD 0.087)] was significantly ( P < 0.05) greater compared with other frequency components. It is suggested that modulations in knee extension force fluctuations are caused by the unique muscle activity in RF during the alternate muscle activity, which augments the high-frequency component of the fluctuations.


2019 ◽  
Vol 2019 ◽  
pp. 1-4 ◽  
Author(s):  
Maryam Bahaloo ◽  
Mohammad Hossein Davari ◽  
Mohammad Sobhan ◽  
Seyyed Jalil Mirmohammadi ◽  
Mohammad Taghi Jalalian ◽  
...  

Introduction. Exposure to high intensity noise produced by MRI is a cause for concern. This study was conducted to determine the temporary and permanent effects of exposure to noise created by performing MRI on the hearing threshold of the subjects using conventional and extended high frequency audiometry. Methods. This semiexperimental study was performed on 35 patients referred to Shahid Rahnemoun Hospital for head and neck MRI due to different clinical conditions. The hearing threshold of patients was measured before, immediately after, and 24 hours after performing 1.5 Tesla MRI using conventional and extended high frequency audiometry. SPSS version 18 was used to compare the mean hearing thresholds before and after MRI using paired T test and repeated measures analysis. Results. Comparison of auditory thresholds in conventional and extended high frequencies before and immediately after MRI showed a significant shift at 4 KHz (P = 0.008 and P = 0.08 for right and left ears), 6 KHz (P = 0.03 and P = 0.01 for right and left ears), and 14 KHz (P =0.03 and P = 0.31 for right and left ears). However, there was no significant difference between audiometric thresholds before and 24 hours after MRI. Conclusion. Noise due to 1.5 Tesla MRI can only cause transient threshold shift.


1983 ◽  
Vol 54 (5) ◽  
pp. 1303-1305 ◽  
Author(s):  
J. M. Lopes ◽  
M. Aubier ◽  
J. Jardim ◽  
J. V. Aranda ◽  
P. T. Macklem

We studied the effect of caffeine on voluntary and electrically stimulated contractions of the adductor pollicis muscle in five adult volunteers. Caffeine (500 mg) was administered orally in a double-blind fashion. Electrical stimulation of the ulnar nerve was performed at 10, 20, 30, 50, and 100 Hz before and after a sustained voluntary contraction held at 50% of the maximal voluntary contraction (MVC). A brief tetanus at 30 Hz was also performed to calculate relaxation rate in the fresh muscle. Contractile properties, relaxation rate, and endurance were then assessed after caffeine and placebo, as well as the response of the fatigued muscle to different frequencies of stimulation. There was no difference in the maximal tension obtained with electrical stimulation (T100) or in the MVC between placebo and caffeine. The tensions developed with electrical stimulation at lower frequencies increased significantly with caffeine ingestion, shifting the frequency-force curve to the left, both before and after fatigue. Mean plasma caffeine concentration associated with these responses was 12.2 +/- 4.9 mg/l. We conclude that caffeine has a direct effect on skeletal muscle contractile properties both before and after fatigue as demonstrated by electrical stimulation.


2008 ◽  
Vol 18 (6) ◽  
pp. 639-652 ◽  
Author(s):  
Nicole D. Park ◽  
Robert D. Maresca ◽  
Kimberly I. McKibans ◽  
D. Reid Morgan ◽  
Timothy S. Allen ◽  
...  

The study’s objective was to determine whether orally ingested caffeine could help overcome excitation-contraction-coupling failure, which has been suggested to explain part of the strength loss associated with eccentric-contraction-induced muscle injury. A sample of 13 college students (4 men and 9 women) was used in a double-blind, repeated-measures experimental design. Each participant performed 2 experimental trials, 1 with each leg, with each trial lasting 4 consecutive days. On a given day, each participant was randomly assigned to ingest a capsule containing 6 mg/kg of either caffeine or flour (placebo). On the day of and the first 2 days after a bout of 50 injurious eccentric contractions done by the knee extensors, the interpolated-twitch technique was used to assess electrically evoked strength, maximal voluntary isometric contraction (MVIC) strength, and percent muscle activation during MVIC both before and after capsule ingestion. These variables were also measured before and after capsule ingestion the day before the eccentric-contraction bout—when the muscle was uninjured. In injured muscle, caffeine had no effect on any variable. In uninjured muscle, caffeine also had no effect on electrically evoked strength but increased MVIC strength by 10.4% compared with placebo (p = .00002), and this was attributed to an increase in muscle activation (6.2%; p = .01). In conclusion, the data provide no evidence that caffeine ingestion can help overcome excitation-contraction-coupling failure, if it exists, in injured human muscle. The data do indicate that caffeine ingestion can increase MVIC strength and activation in uninjured muscle but not in injured muscle.


2001 ◽  
Vol 91 (3) ◽  
pp. 1055-1060 ◽  
Author(s):  
Lars Nybo ◽  
Bodil Nielsen

The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40°C; hyperthermia) and thermoneutral (18°C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 ± 0.1°C (mean ± SE) at exhaustion after 50 ± 3 min of exercise. In control, core temperature stabilized at ∼38.0 ± 0.1°C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a “nonexercised” muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 ± 7%) compared with control (82 ± 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage.


Sign in / Sign up

Export Citation Format

Share Document