Shoulder Strength and Upper Body Field Performance Tests in Young Female Handball and Volleyball Athletes: Are There Differences Between Sports?

2021 ◽  
pp. 1-8
Author(s):  
Michele Forgiarini Saccol ◽  
Gisele Garcia Zanca ◽  
Rafaela Oliveira Machado ◽  
Lilian Pinto Teixeira ◽  
Rose Löbell ◽  
...  

Context: Volleyball and handball players have usually been studied collectively as “overhead athletes,” since throwing present similarities in the proximal to distal movement sequencing and upper limb joints ranges of motion. However, each sport presents specificities in the objectives when accelerating the ball and a variety of possible throwing techniques. Therefore, it is expected there may be differences in the shoulder and upper body physical performance between sports. Objective: The aim of this study was to determine if there are differences in shoulder muscle strength and upper body field performance tests between volleyball and handball athletes. Design: Cross-sectional. Methods: Ninety-nine volleyball and handball female athletes aged between 13 and 20 years were evaluated for isometric shoulder abductor and rotator strength (handheld dynamometer) and upper body field performance tests: Y Balance Test—Upper Quarter, modified Closed Kinetic Chain Upper-Extremity Stability Test, and unilateral and bilateral Seated Medicine Ball Throw. Results: Handball athletes presented greater shoulder internal rotation strength (between-group difference: 2.84; effect size 0.70), higher medial (between-group difference: 9.54; effect size 0.90), superolateral (between-group differences: 8.9; effect size 0.68), and composite scores (between-group difference 5.7; effect size 0.75) of the Y Balance Test—Upper Quarter and higher unilateral (between-group difference: 41.92; effect size 0.91) and bilateral (between-group difference: 46.11; effect size 0.83) Seated Medicine Ball Throw performance. Groups were not different for Closed Kinetic Chain Upper-Extremity Stability Test, external rotation, and abduction isometric strength. Conclusion: Our findings suggest that young female handball athletes present greater internal rotator strength and better performance in Y Balance Test—Upper Quarter and Seated Medicine Ball Throw compared to volleyball players. These differences may be related to the different demands required in the throwing movements performed in each sport and should be considered when assessing these populations.

Author(s):  
Katelyn M. Christian ◽  
Matthew F. Moran

The upper quarter Y-balance test is an upper extremity, closed kinetic chain assessment that requires individuals to reach in three directions while in a three-point plank position. The upper quarter Y-balance test was performed in 22 collegiate softball players (19.95 ± 1.52 years) to determine the (a) differences between throwing and nonthrowing (NT) sides and (b) influence of reach sequence. While stabilizing on the NT side, participants reached significantly further in the inferolateral direction than the throwing side (NT: 83.7 ± 12.2% arm length; throwing: 80.1 ± 10.5% arm length; p = .03; effect size = −0.57). Altering reach sequence significantly influenced medial reach (p < .01, effect size = 0.66) and composite score (p = .017, effect size = 1.03) when stabilizing on the NT side. Asymmetries in upper quarter Y-balance test in collegiate softball players should be interpreted cautiously, and an ordered test sequence should be consistently followed.


Author(s):  
Anna Luiza Teixeira ◽  
Anamaria Siriani de Oliveira ◽  
Nathália Alves Rodrigues ◽  
Guilherme Augusto Santos Bueno ◽  
Maria Eduarda Oliveira Novais ◽  
...  

2014 ◽  
Vol 2 (11_suppl3) ◽  
pp. 2325967114S0027 ◽  
Author(s):  
Zeynep Hazar ◽  
Naime Ulug ◽  
Inci Yuksel

Objectives: The Upper Quarter Y Balance Test (UQYBT) is a reliable upper extremity closed kinetic chain test that can be used to assess unilateral upper extremity performance in a closed chain manner. However, UQYBT was tested only in recreational athletes and there are no studies investigating UQYBT scores in patients with various upper extremity musculoskeletal injuries. The purpose of this study was to examine differences in performance on the Upper Quarter Y Balance Test between patient with shoulder impingement syndrome and healthy controls. Methods: A sample of fifteen patients with shoulder impingement syndrome (mean age 32.2±4.2 years) and fifteen healthy control (mean age 33.8±6.2 years) performed the UQYBT. UQYBT was collected bilaterally in three directions (medial, inferolateral, and superolateral). The maximum reach distance for each direction was normalized to upper extremity length (spinous process of C7 to tip of middle finger) and used for analysis Results: A significant difference in performance between patients with shoulder impingement syndrome and healthy controls existed in the medial direction (P<0.05) and the inferolateral direction (P<0.05) where the healthy controls performed better. There was no significant difference in superolateral performance. Conclusion: The results of this study suggest that patients with shoulder impingement syndrome will perform worse on the UQYBT in the medial and inferolateral directions than healthy controls. Thus, upper extremity closed kinetic chain exercises should be added in shoulder rehabilitation programs.


2021 ◽  
pp. 1-9
Author(s):  
Nazli Busra Cigercioglu ◽  
Hande Guney-Deniz ◽  
Ezgi Unuvar ◽  
Filiz Colakoglu ◽  
Gul Baltaci

Purpose: Repetitive and asymmetric movements in tennis can result in biomechanical adaptation in shoulder joint. The aim of this study was to investigate the differences in shoulder range of motion (ROM), strength, and functional performance tests between the dominant and nondominant shoulders, as well as to identify gender differences in junior tennis players. Methods: Forty-two junior tennis players (age mean: 11.3 [1.2] y, body mass index 18.3 [2.4] kg/m2) were included in the study. Shoulder internal rotation (IR), external rotation (ER) ROM, and total ROM, IR and ER isokinetic strength and closed kinetic chain upper-extremity stability, seated medicine ball throw used, grip hold tests were applied bilaterally. Paired sample t test and Student t test were used to compare the differences. Results: ER ROM was greater, while IR ROM and total ROM were lower on the dominant shoulder (all P values < .05). Nineteen players had glenohumeral IR deficit (IR ROM difference >13°). The players had a greater ER strength on the dominant side and similar IR strength between shoulders. There was significant difference in seated medicine ball throw results between the dominant and nondominant sides (P < .001). The mean distance for bilateral seated medicine ball throw was 377.02 (85.70) m, and closed kinetic chain upper-extremity stability results were calculated as a mean of 15.85 (1.72) touches. Differences between the genders: total ROM of the dominant shoulder was higher in female players (P = .045), the IR PT/BW at 60°/s angular speed was higher in male players’ dominant shoulder (P = .030), and closed kinetic chain upper-extremity stability performance was higher in male players (P = .019). Conclusions: Adolescent tennis players demonstrated differences in strength, ROM, and functional performance results between the dominant and nondominant shoulders. Gender differences were also seen in the aforementioned parameters in junior tennis players. Determining these differences may improve our understanding of sport-specific shoulder joint adaptations in tennis.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0014
Author(s):  
Danielle A Farzanegan ◽  
Emily Francione ◽  
Nicole Melfi

Background: Artistic competitive gymnastics results in a wide, unique spectrum of injuries. Due to the high number of injuries and the current lack of research related to pre-competitive testing in adolescent gymnasts, it is crucial to find a method to predict the likelihood of an athlete sustaining an in-season injury. Purpose: The purpose of this study was to 1) describe the frequency and type of pre-season and in-season injuries, 2) determine if there were differences in physical performance tests between those who had a lower extremity (LE) injury in-season and those who did not, and 3) determine if there were differences in age, level, sex, BMI, sport modifications, previous injury, and current injury between those who had a LE injury and those who didn’t. Methods: Thirty-seven adolescent gymnasts (average age: 12.81 years) were included with levels ranging from 5 (novice) to 10 (elite). Participants (15 males and 22 females) were surveyed for previous and current injury. The athletes completed a performance battery before the competition season including: Lower Quarter Y-Balance Test (LQYBT), Closed Kinetic Chain dorsiflexion (CKCDF), single hop (SH), triple hop (TH), and the Functional Movement Screen (FMS). Follow-up data was collected at the end of the competitive season for comparison. The data was analyzed using descriptive methods and comparative analyses including chi-square and independent t-tests with an alpha level set at .05. Results: Sixty-five percent reported an injury in the last year and seventy-eight percent reported pre-season injuries at testing day. The most common location for pre-season injury was the ankle/foot (24% and 31% respectively). There were no differences between injured and non-injured athletes when comparing asymmetries in CKCDF, LQYBT posteromedial or posterolateral reach, hop testing, or FMS. The LQYBT-anterior scores were significantly different at p=.049 between the injured versus uninjured groups, with 91% of the in-season injury group having a difference <4cm. Similarly, the LQYBT-composite score using a cut-off of 95% was significant at p=.043 with those >95% category being more likely to get injured. There were no significant differences in demographic information comparing injury occurrence. Conclusion: The tested physical performance battery may be useful in tracking gymnasts over time, but may not be beneficial in forecasting injuries in a sport with high percentages of acute injuries. The collected injury volume may not be reflective of a standard season as COVID-19 decreased the number of competitions. Additional research to identify athletes at risk for injury requires further investigation.


2020 ◽  
Vol 52 (7S) ◽  
pp. 43-43
Author(s):  
Ethan S. Welch ◽  
Matthew D. Watson ◽  
George J. Davies ◽  
Bryan L. Riemann

2020 ◽  
Vol 45 ◽  
pp. 120-125
Author(s):  
Ethan S. Welch ◽  
Matthew D. Watson ◽  
George J. Davies ◽  
Bryan L. Riemann

1999 ◽  
Vol 8 (3) ◽  
pp. 184-194 ◽  
Author(s):  
Mary E. Ubinger ◽  
William E. Prentice ◽  
Kevin M. Guskiewicz

When the upper extremity is injured, open kinetic chain (OKC) exercises are primarily used to increase strength and restore functional ability—the goals of rehabilitation. It is also imperative, however, that the receptors responsible for static and dynamic stabilization of the joint be trained. This can be done with closed kinetic chain (CKC) exercises. The purposes of this study were to investigate the effect of a 4-week CKC training program on the neuromuscular control of the upper extremity and to determine whether there was a significant difference between skill-dominant limb and nondominant limb stability indices. Thirty-two physically active participants (14 men, 18 women) were tested on the FASTEX 4 weeks apart. The training group's scores significantly improved, whereas the control group's scores remained the same. It was concluded that the CKC training significantly improved the training group's ability to remain stable. The results suggest that CKC training can increase the accuracy of joint position sense because of increased stimulation of the mechanoreceptors.


Sign in / Sign up

Export Citation Format

Share Document