scholarly journals Longitudinal Changes in the Oxygen Uptake Kinetic Response to Heavy-Intensity Exercise in 14- to 16-Year-Old Boys

2010 ◽  
Vol 22 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Brynmor C. Breese ◽  
Craig A. Williams ◽  
Alan R. Barker ◽  
Joanne R. Welsman ◽  
Samantha G. Fawkner ◽  
...  

This study examined longitudinal changes in the pulmonary oxygen uptake (pV̇O2) kinetic response to heavy-intensity exercise in 14–16 yr old boys. Fourteen healthy boys (age 14.1 ± 0.2 yr) completed exercise testing on two occasions with a 2-yr interval. Each participant completed a minimum of three ‘step’ exercise transitions, from unloaded pedalling to a constant work rate corresponding to 40% of the difference between the pV̇O2 at the gas exchange threshold and peak pV̇O2 (Δ). Over the 2-yr period a significant increase in the phase II time constant (25 ± 5 vs. 30 ± 5 s; p = .002, ω2 = 0.34), the relative amplitude of the pV̇O2 slow component (9 ± 5 vs. 13 ± 4%; p = .036, ω2 = 0.14) and the pV̇O2 gain at end-exercise (11.6 ± 0.6 vs. 12.4 ± 0.7 mL·min−1·W−1; p < .001, ω2 = 0.42) were observed. These data indicate that the control of oxidative phosphorylation in response to heavy-intensity cycling exercise is age-dependent in teenage boys.

2010 ◽  
Vol 22 (2) ◽  
pp. 314-325 ◽  
Author(s):  
Brynmor C. Breese ◽  
Craig A. Williams ◽  
Alan R. Barker ◽  
Joanne R. Welsman ◽  
Samantha G. Fawkner ◽  
...  

This study examined longitudinal changes in the pulmonary oxygen uptake (pV̇O2) kinetic response to heavy-intensity exercise in 14–16 yr old boys. Fourteen healthy boys (age 14.1 ± 0.2 yr) completed exercise testing on two occasions with a 2-yr interval. Each participant completed a minimum of three ‘step’ exercise transitions, from unloaded pedalling to a constant work rate corresponding to 40% of the difference between the pV̇O2 at the gas exchange threshold and peak pV̇O2 (40% Δ). Over the 2-yr period a significant increase in the phase II time constant (25 ± 5 vs. 30 ± 5 s; p = .002, ω2 = 0.34), the relative amplitude of the pV̇O2 slow component (9 ± 5 vs. 13 ± 4%; p = .036, ω2 = 0.14) and the pV̇O2 gain at end-exercise (11.6 ± 0.6 vs. 12.4 ± 0.7 mL·min−1·W−1; p < .001, ω2 = 0.42) were observed. These data indicate that the control of oxidative phosphorylation in response to heavy-intensity cycling exercise is age-dependent in teenage boys.


2017 ◽  
Vol 42 (11) ◽  
pp. 1127-1134 ◽  
Author(s):  
Thaysa Ghiarone ◽  
Thays Ataide-Silva ◽  
Romulo Bertuzzi ◽  
Glenn Kevin McConell ◽  
Adriano Eduardo Lima-Silva

While nitrate supplementation influences oxygen uptake (V̇O2) response to exercise, this effect may be intensity dependent. The purpose of this study was to investigate the effect of acute nitrate supplementation on V̇O2 response during different exercise intensity domains in humans. Eleven men ingested 10 mg·kg−1 body mass (8.76 ± 1.35 mmol) of sodium nitrate or sodium chloride (placebo) 2.5 h before cycling at moderate (90% of gas exchange threshold; GET), heavy (GET + 40% of the difference between GET and peak oxygen uptake (V̇O2peak), Δ 40) or severe (GET + 80% of the difference between GET and V̇O2peak, Δ 80) exercise intensities. Volunteers performed exercise for 10 min (moderate), 15 min (heavy) or until exhaustion (severe). Acute nitrate supplementation had no effect on any V̇O2 response parameters during moderate and severe exercise intensities. However, the V̇O2 slow amplitude (nitrate: 0.93 ± 0.36 L·min−1 vs. placebo: 1.13 ± 0.59 L·min−1, p = 0.04) and V̇O2 slow gain (nitrate: 5.81 ± 2.37 mL·min–1·W−1 vs. placebo: 7.09 ± 3.67 mL·min–1·W−1, p = 0.04) were significantly lower in nitrate than in placebo during the heavy exercise intensity. There was no effect of nitrate on plasma lactate during any exercise intensity (p > 0.05). Time to exhaustion during the severe exercise intensity was also not affected by nitrate (p > 0.05). In conclusion, acute nitrate supplementation reduced the slow component of V̇O2 only when performing heavy-intensity exercise, which might indicate an intensity-dependent effect of nitrate on V̇O2 response.


2015 ◽  
Vol 40 (9) ◽  
pp. 918-923 ◽  
Author(s):  
Kelly de Jesus ◽  
Ana Sousa ◽  
Karla de Jesus ◽  
João Ribeiro ◽  
Leandro Machado ◽  
...  

Swimming and training are carried out with wide variability in distances and intensities. However, oxygen uptake kinetics for the intensities seen in swimming has not been reported. The purpose of this study was to assess and compare the oxygen uptake kinetics throughout low-moderate to severe intensities during incremental swimming exercise. We hypothesized that the oxygen uptake kinetic parameters would be affected by swimming intensity. Twenty male trained swimmers completed an incremental protocol of seven 200-m crawl swims to exhaustion (0.05 m·s−1 increments and 30-s intervals). Oxygen uptake was continuously measured by a portable gas analyzer connected to a respiratory snorkel and valve system. Oxygen uptake kinetics was assessed using a double exponential regression model that yielded both fast and slow components of the response of oxygen uptake to exercise. From low-moderate to severe swimming intensities changes occurred for the first and second oxygen uptake amplitudes (P ≤ 0.04), time constants (P = 0.01), and time delays (P ≤ 0.02). At the heavy and severe intensities, a notable oxygen uptake slow component (>255 mL·min−1) occurred in all swimmers. Oxygen uptake kinetics whilst swimming at different intensities offers relevant information regarding cardiorespiratory and metabolic stress that might be useful for appropriate performance diagnosis and training prescription.


2004 ◽  
Vol 97 (2) ◽  
pp. 460-466 ◽  
Author(s):  
Samantha G. Fawkner ◽  
Neil Armstrong

The purpose of this study was to investigate longitudinal changes with age in the kinetic response to cycling at heavy-intensity exercise in boys and girls. Twenty-two prepubertal children (13 male, 9 female) carried out a series of exercise tests on two test occasions with a 2-yr interval. On each test occasion, the subject completed multiple transitions from baseline to 40% of the difference between their previously determined V-slope and peak O2 uptake (V̇o2) for 9 min on an electronically braked cycle ergometer. Each subject's breath-by-breath responses were interpolated to 1-s intervals, time aligned, and averaged. The data after phase 1 were fit with 1) a double exponential model and 2) a single exponential model within a fitting window that was previously identified to exclude the slow component. There were no significant differences in the parameters of the primary component between each model. Subsequent analysis was carried out using model 2. The V̇o2 slow component was computed as the difference between the amplitude of the primary component and the end-exercise V̇o2 and was expressed as the percent contribution to the total change in V̇o2. Over the 2-yr period, the primary time constant (boys 16.8 ± 5.3 and 21.7 ± 5.3 s, girls 21.1 ± 8.1 and 26.4 ± 8.4 s, first and second occasion, respectively) and the relative amplitude of the slow component (boys 9.4 ± 4.6 and 13.8 ± 5.3%, girls 10.3 ± 2.4 and 15.5 ± 2.8%, first and second occasion, respectively) significantly increased with no sex differences. The data demonstrate that children do display a slow-component response to exercise and are consistent with an age-dependent change in the muscles' potential for O2 utilization.


Author(s):  
Alan R Barker ◽  
Neil Armstrong

The pulmonary oxygen uptake (pV̇O2) kinetic response to exercise provides valuable non-invasive insight into the control of oxidative phosphorylation and determinants of exercise tolerance in children and adolescents. Few methodologically robust studies have investigated pV̇O2 kinetics in children and adolescents, but age- and sex-related differences have been identified. There is a clear age-related slowing of phase II pV̇O2 kinetics during heavy and very heavy exercise, with a trend showing during moderate intensity exercise. During heavy and very heavy exercise the oxygen cost is higher for phase II and the pV̇O2 component is truncated in children. Sex-related differences occur during heavy, but not moderate, intensity exercise, with boys having faster phase II pV̇O2 kinetics and a smaller pV̇O2 slow component compared to girls. The mechanisms underlying these differences are likely related to changes in phosphate feedback controllers of oxidative phosphorylation, muscle oxygen delivery, and/or muscle fibre recruitment strategies.


2006 ◽  
Vol 1 (4) ◽  
pp. 361-374 ◽  
Author(s):  
Stephen B. Draper ◽  
Dan M. Wood ◽  
Jo Corbett ◽  
David V.B. James ◽  
Christopher R. Potter

We tested the hypothesis that prior heavy-intensity exercise reduces the difference between asymptotic oxygen uptake (VO2) and maximum oxygen uptake (VO2max) during exhaustive severe-intensity running lasting ≍2 minutes. Ten trained runners each performed 2 ramp tests to determine peak VO2 (VO2peak) and speed at venti-latory threshold. They performed exhaustive square-wave runs lasting ≍2 minutes, preceded by either 6 minutes of moderate-intensity running and 6 minutes rest (SEVMOD) or 6 minutes of heavy-intensity running and 6 minutes rest (SEVHEAVY). Two transitions were completed in each condition. VO2 was determined breath by breath and averaged across the 2 repeats of each test; for the square-wave test, the averaged VO2 response was then modeled using a monoexponential function. The amplitude of the VO2 response to severe-intensity running was not different in the 2 conditions (SEVMOD vs SEVHEAVY; 3925 ± 442 vs 3997 ± 430 mL/min, P = .237), nor was the speed of the response (τ; 9.2 ± 2.1 vs 10.0 ± 2.1 seconds, P = .177). VO2peak from the square-wave tests was below that achieved in the ramp tests (91.0% ± 3.2% and 92.0% ± 3.9% VO2peak, P < .001). There was no difference in time to exhaustion between conditions (110.2 ± 9.7 vs 111.0 ± 15.2 seconds, P = .813). The results show that the primary VO2 response is unaffected by prior heavy exercise in running performed at intensities at which exhaustion will occur before a slow component emerges.


2008 ◽  
Vol 33 (1) ◽  
pp. 107-117 ◽  
Author(s):  
Nicola Lai ◽  
Melita M. Nasca ◽  
Marco A. Silva ◽  
Fatima T. Silva ◽  
Brian J. Whipp ◽  
...  

The dynamics of the pulmonary oxygen uptake (VO2) responses to square-wave changes in work rate can provide insight into bioenergetic processes sustaining and limiting exercise performance. The dynamic responses at the onset of exercise and during recovery have been investigated systematically and are well characterized at all intensities in adults; however, they have not been investigated completely in adolescents. We investigated whether adolescents display a slow component in their VO2 on- and off-kinetic responses to heavy- and very heavy-intensity exercise, as demonstrated in adults. Healthy African American male adolescents (n = 9, 14–17 years old) performed square-wave transitions on a cycle ergometer (from and to a baseline work rate of 20 W) to work rates of moderate (M), heavy (H), and very heavy (VH) intensity. In all subjects, the VO2 on-kinetics were best described with a single exponential at moderate intensity (τ1, on = 36 ± 11 s) and a double exponential at heavy (τ1, on = 29 ± 9 s; τ2, on = 197 ± 92 s) and very heavy (τ1, on = 36 ± 9 s; τ2, on = 302 ± 14 s) intensities. In contrast, the VO2 off-kinetics were best described with a single exponential at moderate (τ1, off = 48 ± 9 s) and heavy (τ1, off = 53 ± 7 s) intensities and a double exponential at very heavy (τ1, off = 51 ± 3 s; τ2, off = 471 ± 54 s) intensity. In summary, adolescents consistently displayed a slow component during heavy exercise (on- but not off- transition) and very heavy exercise (on- and off-transitions). Although the overall response dynamics in adolescents were similar to those previously observed in adults, their specific characterizations were different, particularly the lack of symmetry between the on- and off-responses.


2000 ◽  
Vol 89 (3) ◽  
pp. 899-907 ◽  
Author(s):  
Helen Carter ◽  
Andrew M. Jones ◽  
Thomas J. Barstow ◽  
Mark Burnley ◽  
Craig A. Williams ◽  
...  

The purpose of the present study was to comprehensively examine oxygen consumption (V˙o 2) kinetics during running and cycling through mathematical modeling of the breath-by-breath gas exchange responses to moderate and heavy exercise. After determination of the lactate threshold (LT) and maximal oxygen consumption (V˙o 2 max) in both cycling and running exercise, seven subjects (age 26.6 ± 5.1 yr) completed a series of “square-wave” rest-to-exercise transitions at running speeds and cycling power outputs that corresponded to 80% LT and 25, 50, and 75%Δ (Δ being the difference between LT andV˙o 2 max).V˙o 2 responses were fit with either a two- (<LT) or three-phase ( >LT) exponential model. The parameters of theV˙o 2 kinetic response were similar between exercise modes, except for the V˙o 2 slow component, which was significantly ( P < 0.05) greater for cycling than for running at 50 and 75%Δ (334 ± 183 and 430 ± 159 ml/min vs. 205 ± 84 and 302 ± 154 ml/min, respectively). We speculate that the differences between the modes are related to the higher intramuscular tension development in heavy cycle exercise and the higher eccentric exercise component in running. This may cause a relatively greater recruitment of the less efficient type II muscle fibers in cycling.


Author(s):  
Victor M. Reis ◽  
Eduardo B. Neves ◽  
Nuno Garrido ◽  
Ana Sousa ◽  
André L. Carneiro ◽  
...  

Oxygen uptake (VO2) kinetics has been analyzed through mathematical modeling of constant work-rate exercise, however, the exponential nature of the VO2 response in resistance exercise is currently unknown. The present work assessed the VO2 on-kinetics during two different sub maximal intensities in the inclined bench press and in the seated leg extension exercise. Twelve males (age: 27.2 ± 4.3 years, height: 177 ± 5 cm, body mass: 79.0 ± 10.6 kg and estimated body fat: 11.4 ± 4.1%) involved in recreational resistance exercise randomly performed 4-min transitions from rest to 12% and 24% of 1 repetition maximum each, of inclined bench press (45°) and leg extension exercises. During all testing, expired gases were collected breath-by-breath with a portable gas analyzer (K4b2, Cosmed, Italy) and VO2 on-kinetics were identified using a multi-exponential mathematical model. Leg extension exercise exhibited a higher R-square, compared with inclined bench press, but no differences were found in-between exercises for the VO2 kinetics parameters. VO2 on-kinetics seems to be more sensitive to muscle related parameters (upper vs. lower body exercise) and less to small load variations in the resistance exercise. The absence of a true slow component indicates that is possible to calculate low-intensity resistance exercise energy cost based solely on VO2 measurements.


2001 ◽  
Vol 90 (5) ◽  
pp. 1700-1706 ◽  
Author(s):  
Craig A. Williams ◽  
Helen Carter ◽  
Andrew M. Jones ◽  
Jonathan H. Doust

The purpose of this study was to compare the kinetics of the oxygen uptake (V˙o 2) response of boys to men during treadmill running using a three-phase exponential modeling procedure. Eight boys (11–12 yr) and eight men (21–36 yr) completed an incremental treadmill test to determine lactate threshold (LT) and maximum V˙o 2. Subsequently, the subjects exercised for 6 min at two different running speeds corresponding to 80% of V˙o 2 at LT (moderate exercise) and 50% of the difference betweenV˙o 2 at LT and maximumV˙o 2 (heavy exercise). For moderate exercise, the time constant for the primary response was not significantly different between boys [10.2 ± 1.0 (SE) s] and men (14.7 ± 2.8 s). The gain of the primary response was significantly greater in boys than men (239.1 ± 7.5 vs. 167.7 ± 5.4 ml · kg−1 · km−1; P < 0.05). For heavy exercise, theV˙o 2 on-kinetics were significantly faster in boys than men (primary response time constant = 14.9 ± 1.1 vs. 19.0 ± 1.6 s; P < 0.05), and the primary gain was significantly greater in boys than men (209.8 ± 4.3 vs. 167.2 ± 4.6 ml · kg−1 · km−1; P < 0.05). The amplitude of theV˙o 2 slow component was significantly smaller in boys than men (19 ± 19 vs. 289 ± 40 ml/min; P < 0.05). The V˙o 2responses at the onset of moderate and heavy treadmill exercise are different between boys and men, with a tendency for boys to have faster on-kinetics and a greater initial increase inV˙o 2 for a given increase in running speed.


Sign in / Sign up

Export Citation Format

Share Document