The Actiheart in Adolescents: A Doubly Labelled Water Validation

2012 ◽  
Vol 24 (4) ◽  
pp. 589-602 ◽  
Author(s):  
Nerissa Campbell ◽  
Harry Prapavessis ◽  
Casey Gray ◽  
Erin McGowan ◽  
Elaine Rush ◽  
...  

Background/Objective: This study investigated the validity of the Actiheart device for estimating free-living physical activity energy expenditure (PAEE) in adolescents. Subjects/Methods: Total energy expenditure (TEE) was measured in eighteen Canadian adolescents, aged 15–18 years, by DLW. Physical activity energy expenditure was calculated as 0.9 X TEE minus resting energy expenditure, assuming 10% for the thermic effect of feeding. Participants wore the chest mounted Actiheart device which records simultaneously minute-by-minute acceleration (ACC) and heart rate (HR). Using both children and adult branched equation modeling, derived from laboratory-based activity, PAEE was estimated from the ACC and HR data. Linear regression analyses examined the association between PAEE derived from the Actiheart and DLW method where DLW PAEE served as the dependent variable. Measurement of agreement between the two methods was analyzed using the Bland-Altman procedure. Results: A nonsignificant association was found between the children derived Actiheart and DLW PAEE values (R = .23, R2 = .05, p = .36); whereas a significant association was found between the adult derived Actiheart and DLW PAEE values (R = .53, R2 = .29, p < .05). Both the children and adult equation models lead to overestimations of PAEE by the Actiheart compared with the DLW method, by a mean difference of 31.42 kcal·kg−·d−1 (95% limits of agreement: −45.70 to −17.15 kcal·kg−1·d−1 and 9.80 kcal·kg−1·d−1 (95% limits of agreement: −21.22-1.72 kcal·kg−1·d−1), respectively. Conclusion: There is relatively poor measurement of agreement between the Actiheart and DLW for assessing free-living PAEE in adolescents. Future work should develop group based branched equation models specifically for adolescents to improve the utility of the device in this population.

2013 ◽  
Vol 2 ◽  
Author(s):  
Marie Löf ◽  
Hanna Henriksson ◽  
Elisabet Forsum

AbstractActivity energy expenditure (AEE) during free-living conditions can be assessed using devices based on different principles. To make proper comparisons of different devices' capacities to assess AEE, they should be evaluated in the same population. Thus, in the present study we evaluated, in the same group of subjects, the ability of three devices to assess AEE in groups and individuals during free-living conditions. In twenty women, AEE was assessed using RT3 (three-axial accelerometry) (AEERT3), Actiheart (a combination of heart rate and accelerometry) (AEEActi) and IDEEA (a multi-accelerometer system) (AEEIDEEA). Reference AEE (AEEref) was assessed using the doubly labelled water method and indirect calorimetry. Average AEEActi was 5760 kJ per 24 h and not significantly different from AEEref (5020 kJ per 24 h). On average, AEERT3 and AEEIDEEA were 2010 and 1750 kJ per 24 h lower than AEEref, respectively (P < 0·001). The limits of agreement (± 2 sd) were 2940 (Actiheart), 1820 (RT3) and 2650 (IDEEA) kJ per 24 h. The variance for AEERT3 was lower than for AEEActi (P = 0·006). The RT3 classified 60 % of the women in the correct activity category while the corresponding value for IDEEA and Actiheart was 30 %. In conclusion, the Actiheart may be useful for groups and the RT3 for individuals while the IDEEA requires further development. The results are likely to be relevant for a large proportion of Western women of reproductive age and demonstrate that the procedure selected to assess physical activity can greatly influence the possibilities to uncover important aspects regarding interactions between physical activity, diet and health.


1998 ◽  
Vol 85 (3) ◽  
pp. 1063-1069 ◽  
Author(s):  
Raymond D. Starling ◽  
Michael J. Toth ◽  
William H. Carpenter ◽  
Dwight E. Matthews ◽  
Eric T. Poehlman

Determinants of daily energy needs and physical activity are unknown in free-living elderly. This study examined determinants of daily total energy expenditure (TEE) and free-living physical activity in older women ( n = 51; age = 67 ± 6 yr) and men ( n = 48; age = 70 ± 7 yr) by using doubly labeled water and indirect calorimetry. Using multiple-regression analyses, we predicted TEE by using anthropometric, physiological, and physical activity indexes. Data were collected on resting metabolic rate (RMR), body composition, peak oxygen consumption (V˙o 2 peak), leisure time activity, and plasma thyroid hormone. Data adjusted for body composition were not different between older women and men, respectively (in kcal/day): TEE, 2,306 ± 647 vs. 2,456 ± 666; RMR, 1,463 ± 244 vs. 1,378 ± 249; and physical activity energy expenditure, 612 ± 570 vs. 832 ± 581. In a subgroup of 70 women and men, RMR andV˙o 2 peakexplained approximately two-thirds of the variance in TEE ( R 2 = 0.62; standard error of the estimate = ±348 kcal/day). Crossvalidation of this equation in the remaining 29 women and men was successful, with no difference between predicted and measured TEE (2,364 ± 398 and 2,406 ± 571 kcal/day, respectively). The strongest predictors of physical activity energy expenditure ( P < 0.05) for women and men were V˙o 2 peak( r = 0.43), fat-free mass ( r = 0.39), and body mass ( r = 0.34). In summary, RMR andV˙o 2 peak are important independent predictors of energy requirements in the elderly. Furthermore, cardiovascular fitness and fat-free mass are moderate predictors of physical activity in free-living elderly.


2004 ◽  
Vol 96 (1) ◽  
pp. 343-351 ◽  
Author(s):  
Søren Brage ◽  
Niels Brage ◽  
Paul W. Franks ◽  
Ulf Ekelund ◽  
Man-Yu Wong ◽  
...  

The combination of heart rate (HR) monitoring and movement registration may improve measurement precision of physical activity energy expenditure (PAEE). Previous attempts have used either regression methods, which do not take full advantage of synchronized data, or have not used movement data quantitatively. The objective of the study was to assess the precision of branched model estimates of PAEE by utilizing either individual calibration (IC) of HR and accelerometry or corresponding mean group calibration (GC) equations. In 12 men (20.6-25.2 kg/m2), IC and GC equations for physical activity intensity (PAI) were derived during treadmill walking and running for both HR (Polar) and hipacceleration [Computer Science and Applications (CSA)]. HR and CSA were recorded minute by minute during 22 h of whole body calorimetry and converted into PAI in four different weightings (P1-4) of the HR vs. the CSA (1-P1-4) relationships: if CSA > x, we used the P1 weighting if HR > y, otherwise P2. Similarly, if CSA ≤ x, we used P3 if HR > z, otherwise P4. PAEE was calculated for a 12.5-h nonsleeping period as the time integral of PAI. A priori, we assumed P1 = 1, P2 = P3 = 0.5, P4 = 0, x = 5 counts/min, y = walking/running transition HR, and z = flex HR. These parameters were also estimated post hoc. Means ± SD estimation errors of a priori models were -4.4 ± 29 and 3.5 ± 20% for IC and GC, respectively. Corresponding post hoc model errors were -1.5 ± 13 and 0.1 ± 9.8%, respectively. All branched models had lower errors ( P ≤ 0.035) than single-measure estimates of CSA (less than or equal to -45%) and HR (≥39%), as well as their nonbranched combination (≥25.7%). In conclusion, combining HR and CSA by branched modeling improves estimates of PAEE. IC may be less crucial with this modeling technique.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0167472 ◽  
Author(s):  
Tom White ◽  
Kate Westgate ◽  
Nicholas J. Wareham ◽  
Soren Brage

2007 ◽  
Vol 39 (Supplement) ◽  
pp. S26
Author(s):  
Soren Brage ◽  
Ulf Ekelund ◽  
Paul W. Franks ◽  
Mark A. Hennings ◽  
Antony Wright ◽  
...  

2014 ◽  
Vol 111 (10) ◽  
pp. 1830-1840 ◽  
Author(s):  
Hanna Henriksson ◽  
Elisabet Forsum ◽  
Marie Löf

Accurate and easy-to-use methods to assess free-living energy expenditure in response to physical activity in young children are scarce. In the present study, we evaluated the capacity of (1) 4 d recordings obtained using the Actiheart (mean heart rate (mHR) and mean activity counts (mAC)) to provide assessments of total energy expenditure (TEE) and activity energy expenditure (AEE) and (2) a 7 d activity diary to provide assessments of physical activity levels (PAL) using three sets of metabolic equivalent (MET) values (PALTorun, PALAdolphand PALAinsworth) in forty-four and thirty-one healthy Swedish children aged 1·5 and 3 years, respectively. Reference TEE, PALrefand AEE were measured using criterion methods, i.e. the doubly labelled water method and indirect calorimetry. At 1·5 years of age, mHR explained 8 % (P= 0·006) of the variation in TEE above that explained by fat mass and fat-free mass. At 3 years of age, mHR and mAC explained 8 (P= 0·004) and 6 (P= 0·03) % of the variation in TEE and AEE, respectively, above that explained by fat mass and fat-free mass. At 1·5 and 3 years of age, average PALAinsworthvalues were 1·44 and 1·59, respectively, and not significantly different from PALrefvalues (1·39 and 1·61, respectively). By contrast, average PALTorun(1·5 and 3 years) and PALAdolph(3 years) values were lower (P< 0·05) than the corresponding PALrefvalues. In conclusion, at both ages, Actiheart recordings explained a small but significant fraction of free-living energy expenditure above that explained by body composition variables, and our activity diary produced mean PAL values in agreement with reference values when using MET values published by Ainsworth.


2013 ◽  
Vol 110 (7) ◽  
pp. 1347-1355 ◽  
Author(s):  
Kazuko Ishikawa-Takata ◽  
Kayoko Kaneko ◽  
Kayo Koizumi ◽  
Chinatsu Ito

The present study compared the accuracy of triaxial accelerometry and the doubly labelled water (DLW) method for measuring physical activity (PA) in Japanese adolescents. A total of sixty adolescents aged 12–15 years were analysed. The total energy expenditure (TEE) was measured over 7 d by the DLW method and with an EW4800P triaxial accelerometer (Panasonic Corporation). The measured (RMRm) and predicted RMR (RMRp) were 5·7 (sd 0·9) and 6·0 (sd 1·0) MJ/d, respectively. TEE measured by the DLW method and accelerometry using RMRm or RMRp were 11·0 (sd 2·6), 10·3 (sd 1·9), and 10·7 (sd 2·1) MJ/d, respectively. The PA levels (PAL) measured by the DLW method using RMRm or RMRp were 1·97 (sd 0·31) and 1·94 (sd 0·31) in subjects who exercised, and 1·85 (sd 0·27) and 1·74 (sd 0·29) in subjects who did not exercise. The percentage of body fat correlated significantly with the percentage difference between RMRmv. RMRp, TEE, PA energy expenditure (PAEE) and PAL using RMRp, and PAL using RMRm assessed by the DLW method and accelerometry. The present data showed that while accelerometry estimated TEE accurately, it did not provide the precise measurement of PAEE and PAL. The error in accelerometry was attributed to the prediction error of RMR and assessment in exercise.


Sign in / Sign up

Export Citation Format

Share Document