scholarly journals A Screen of Approved Drugs Identifies the Androgen Receptor Antagonist Flutamide and Its Pharmacologically Active Metabolite 2-Hydroxy-Flutamide as Heterotropic Activators of Cytochrome P450 3A In Vitro and In Vivo

2015 ◽  
Vol 43 (11) ◽  
pp. 1718-1726 ◽  
Author(s):  
Anna L. Blobaum ◽  
Frank W. Byers ◽  
Thomas M. Bridges ◽  
Charles W. Locuson ◽  
P. Jeffrey Conn ◽  
...  
1999 ◽  
Vol 15 (1-2) ◽  
pp. 80-93 ◽  
Author(s):  
Joseph Ostby ◽  
William R. Kelce ◽  
Christy Lambright ◽  
Cynthia J. Wolf ◽  
Peter Mann ◽  
...  

Pharmacology ◽  
2020 ◽  
Vol 105 (11-12) ◽  
pp. 715-718
Author(s):  
Abigail R. Bland ◽  
Nensi Shrestha ◽  
Rhonda J. Rosengren ◽  
John C. Ashton

Crizotinib is a tyrosine kinase inhibitor used to treat anaplastic lymphoma kinase-positive lung cancer. There is in vitro evidence that crizotinib may auto-inhibit cytochrome P450 3A (CYP3A) activity, with important implications for crizotinib pharmacokinetics. In order to test whether crizotinib treatment alters CYP3A activity in vivo, mice were treated with 5 and 25 mg/kg crizotinib (p.o.) daily for 14 days. Results showed that crizotinib treatment did not alter CYP3A activity as determined by erythromycin <i>N</i>-demethylation. In addition, CYP3A polypeptide expression as measured by Western blot was unchanged. Therefore, our results do not support CYP3A inhibition by crizotinib in vivo.


2020 ◽  
Vol Volume 14 ◽  
pp. 1909-1919
Author(s):  
Yunfang Zhou ◽  
Ailian Hua ◽  
Quan Zhou ◽  
Peiwu Geng ◽  
Feifei Chen ◽  
...  

2020 ◽  
Vol 88 (4) ◽  
pp. 42
Author(s):  
Georg Voelcker

Although cyclophosphamide (CP) has been used successfully in the clinic for over 50 years, it has so far not been possible to elucidate the mechanism of action and to use it for improvement. This was not possible because the basis of the mechanism of action of CP, which was found by lucky coincidence, is apoptosis, the discovery of which was honored with the Nobel Prize only in 2002. Another reason was that results from cell culture experiments were used to elucidate the mechanism of action, ignoring the fact that in vivo metabolism differs from in vitro conditions. In vitro, toxic acrolein is formed during the formation of the cytotoxic metabolite phosphoreamidemustard (PAM), whereas in vivo proapoptotic hydroxypropanal (HPA) is formed. The CP metabolites formed in sequence 4-hydroxycyclophosphamide (OHCP) are the main cause of toxicity, aldophosphamide (ALDO) is the pharmacologically active metabolite and HPA amplifies the cytotoxic apoptosis initiated by DNA alkylation by PAM. It is shown that toxicity is drastically reduced but anti-tumor activity strongly increased by the formation of ALDO bypassing OHCP. Furthermore, it is shown that the anti-tumor activity against advanced solid P388 tumors that grow on CD2F1 mice is increased by orders of magnitude if DNA damage caused by a modified PAM is poorly repairable.


2017 ◽  
Vol 10 (6) ◽  
pp. 576-581 ◽  
Author(s):  
Sunday O. Nduka ◽  
Mathew J. Okonta ◽  
Daniel L. Ajaghaku ◽  
Chinwe V. Ukwe

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaojing Wang ◽  
Yaqin Yang ◽  
María-Aránzazu Martínez ◽  
Marta Martínez ◽  
Bernardo Lopez-Torres ◽  
...  

When two drugs are combined, drug-drug interactions (DDI) often occur. Metabolic DDI usually occur due to inhibition of the metabolism of one drug by the other. This leads to an increase in the plasma concentration of the drug whose metabolism is inhibited. The objective of this research study was to verify the DDI risk of two antibacterial, florfenicol (FF) and doxycycline (DOX) due to metabolism. Because food containing residues of any pharmacologically active substance could potentially constitute a public health hazard, we selected a food producing animal, goat, goat liver microsomes and recombinant metabolic enzymes, for in vivo and in vitro metabolism studies. In vitro experiments showed that CYP3A was the key enzyme subfamily in FF metabolism, DOX slowed down FF metabolism and R440 was possibly the key amino acid in the metabolic interaction between FF and DOX. In vivo studies in the goats showed that DOX inhibited up-regulation of CYP3A24 gene expression produced by FF; in liver and kidney, DOX slightly slowed down FF metabolism. Quantitative prediction of DDI risk suggest that when DOX is used in combination with FF in veterinary medicine, may result in a clinical significant increase of FF plasma and tissue concentrations, resulting a prevalence of harmful tissue residues of medicinal products in the food chain. Through our experimentation, when DOX is used in combination with FF, the withdrawal period of FF in the kidney was extended by 1 day. Otherwise, an appropriate withdrawal period (20 days) of FF was established for FF and DOX combined use to ensure that the animal can be safely slaughtered for food.


2013 ◽  
Vol 52 (5) ◽  
pp. 333-345 ◽  
Author(s):  
Ibrahim Ince ◽  
Catherijne A. J. Knibbe ◽  
Meindert Danhof ◽  
Saskia N. de Wildt

Sign in / Sign up

Export Citation Format

Share Document