Does Crizotinib Auto-Inhibit CYP3A in vivo?

Pharmacology ◽  
2020 ◽  
Vol 105 (11-12) ◽  
pp. 715-718
Author(s):  
Abigail R. Bland ◽  
Nensi Shrestha ◽  
Rhonda J. Rosengren ◽  
John C. Ashton

Crizotinib is a tyrosine kinase inhibitor used to treat anaplastic lymphoma kinase-positive lung cancer. There is in vitro evidence that crizotinib may auto-inhibit cytochrome P450 3A (CYP3A) activity, with important implications for crizotinib pharmacokinetics. In order to test whether crizotinib treatment alters CYP3A activity in vivo, mice were treated with 5 and 25 mg/kg crizotinib (p.o.) daily for 14 days. Results showed that crizotinib treatment did not alter CYP3A activity as determined by erythromycin <i>N</i>-demethylation. In addition, CYP3A polypeptide expression as measured by Western blot was unchanged. Therefore, our results do not support CYP3A inhibition by crizotinib in vivo.

2018 ◽  
Vol 33 (2) ◽  
pp. 65-73 ◽  
Author(s):  
Dmitriy V. Ivashchenko ◽  
Anastasia V. Rudik ◽  
Andrey A. Poloznikov ◽  
Sergey V. Nikulin ◽  
Valeriy V. Smirnov ◽  
...  

Abstract Background: Phenazepam (bromdihydrochlorphenylbenzodiazepine) is the original Russian benzodiazepine tranquilizer belonging to 1,4-benzodiazepines. There is still limited knowledge about phenazepam’s metabolic liver pathways and other pharmacokinetic features. Methods: To determine phenazepam’s metabolic pathways, the study was divided into three stages: in silico modeling, in vitro experiment (cell culture study), and in vivo confirmation. In silico modeling was performed on the specialized software PASS and GUSAR to evaluate phenazepam molecule affinity to different cytochromes. The in vitro study was performed using a hepatocytes’ cell culture, cultivated in a microbioreactor to produce cytochrome P450 isoenzymes. The culture medium contained specific cytochrome P450 isoforms inhibitors and substrates (for CYP2C9, CYP3A4, CYP2C19, and CYP2B6) to determine the cytochrome that was responsible for phenazepam’s metabolism. We also measured CYP3A activity using the 6-betahydroxycortisol/cortisol ratio in patients. Results: According to in silico and in vitro analysis results, the most probable metabolizer of phenazepam is CYP3A4. By the in vivo study results, CYP3A activity decreased sufficiently (from 3.8 [95% CI: 2.94–4.65] to 2.79 [95% CI: 2.02–3.55], p=0.017) between the start and finish of treatment in patients who were prescribed just phenazepam. Conclusions: Experimental in silico and in vivo studies confirmed that the original Russian benzodiazepine phenazepam was the substrate of CYP3A4 isoenzyme.


2020 ◽  
Vol Volume 14 ◽  
pp. 1909-1919
Author(s):  
Yunfang Zhou ◽  
Ailian Hua ◽  
Quan Zhou ◽  
Peiwu Geng ◽  
Feifei Chen ◽  
...  

2016 ◽  
Vol 23 (8) ◽  
pp. 602-614 ◽  
Author(s):  
Trang H Au ◽  
Courtney C Cavalieri ◽  
David D Stenehjem

Clinical pharmacists are important contributors to the care of patients with cancer; it is therefore critical for oncology clinical pharmacists to stay current with new anticancer therapies. This review summarizes the epidemiology and pathogenesis of non-small cell lung cancer, including the most common genetic alterations, as well as the mechanism of action, clinical development, pharmacodynamics and pharmacokinetics of the anaplastic lymphoma kinase inhibitor ceritinib for the treatment of patients with anaplastic lymphoma kinase-positive non-small cell lung cancer. Targeted therapies based on the presence of specific mutations are an important development in the treatment of non-small cell lung cancer. However, acquired resistance to the first anaplastic lymphoma kinase-inhibitor approved by the U.S. Food and Drug Administration, crizotinib, is observed in almost half of patients treated with it. Ceritinib is an oral anaplastic lymphoma kinase-inhibitor that has demonstrated more potent antitumor activity than crizotinib in preclinical models. It was granted accelerated approval in 2014 to treat anaplastic lymphoma kinase-positive metastatic non-small cell lung cancer patients who have progressed on or are intolerant to crizotinib. Ceritinib represents an important alternative second-line therapy for patients with metastatic non-small cell lung cancer who have traditionally limited treatment options.


2017 ◽  
Vol 10 (6) ◽  
pp. 576-581 ◽  
Author(s):  
Sunday O. Nduka ◽  
Mathew J. Okonta ◽  
Daniel L. Ajaghaku ◽  
Chinwe V. Ukwe

2015 ◽  
Vol 8 (1) ◽  
pp. 21-24 ◽  
Author(s):  
Yoshihiko Sakata ◽  
Kodai Kawamura ◽  
Kazuya Ichikado ◽  
Masakazu Yoshioka

Orbital metastasis of lung cancer is rare. It often causes visual disorder. To date, there are only a few case reports. Crizotinib is an anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor that leads to responses in most patients with ALK-positive non-small-cell lung cancer. Visual disorder is one of the popular adverse events of crizotinib, but the symptom almost decreases over time. We report a case of orbital metastasis as the disease progression of ALK-positive lung cancer treated with crizotinib. It should be kept in mind that orbital metastasis can be the disease progression of lung adenocarcinoma with ALK translocation treated with crizotinib. When physicians encounter a patient receiving crizotinib with visual disorder, we must distinguish between adverse events and orbital metastasis.


Sign in / Sign up

Export Citation Format

Share Document