FUNCTIONAL CHARACTERIZATION OF FOUR NATURALLY OCCURRING VARIANTS OF HUMAN PREGNANE X RECEPTOR (PXR): ONE VARIANT CAUSES DRAMATIC LOSS OF BOTH DNA BINDING ACTIVITY AND THE TRANSACTIVATION OF THE CYP3A4 PROMOTER/ENHANCER REGION

2004 ◽  
Vol 32 (1) ◽  
pp. 149-154 ◽  
Author(s):  
Satoru Koyano ◽  
Kouichi Kurose ◽  
Yoshiro Saito ◽  
Shogo Ozawa ◽  
Ryuichi Hasegawa ◽  
...  
2021 ◽  
Author(s):  
Leah M. Williams ◽  
Sainetra Sridhar ◽  
Jason Samaroo ◽  
Ebubechi K. Adindu ◽  
Anvitha Addanki ◽  
...  

In this report, we investigate the evolution of transcription factor NF-κB by examining its structure, activity, and regulation in two protists using phylogenetic, cellular, and biochemical techniques. In Capsaspora owczarzaki (Co), we find that full-length NF-κB has an N-terminal DNA-binding domain and a C-terminal Ankyrin (ANK) repeat inhibitory domain, and its DNA-binding activity is more similar to metazoan NF-κB rather than Rel proteins. As with mammalian NF-κB proteins, removal of the ANK repeats is required for Co-NF-κB to enter the nucleus, bind DNA, and activate transcription. However, C-terminal processing of Co-NF-κB is not induced by co-expression of IKK in human cells. Exogenously expressed Co-NF-κB localizes to the nucleus in Co cells. NF-κB mRNA and DNA-binding levels differ across three life stages of Capsaspora, suggesting distinct roles for NF-κB in these life stages. RNA-seq and GO analyses identify possible gene targets and biological functions of Co-NF-κB. We also show that three NF-κB-like proteins from the choanoflagellate Acanthoeca spectabilis (As) all consist of primarily the N-terminal conserved Rel Homology domain sequences of NF-κB, and lack C-terminal ANK repeats. All three As-NF-κB proteins constitutively enter the nucleus of human and Co cells, but differ in their DNA-binding and transcriptional activation activities. Furthermore, all three As-NF-κB proteins can form heterodimers, indicating that NF-κB diversified into multi-subunit families at least two times during evolution. Overall, these results present the first functional characterization of NF-κB in a taxonomic kingdom other than Animalia and provide information about the evolution and diversification of this biologically important transcription factor.


Biochemistry ◽  
2010 ◽  
Vol 49 (4) ◽  
pp. 679-686 ◽  
Author(s):  
Jennifer Grants ◽  
Erin Flanagan ◽  
Andrea Yee ◽  
Paul J. Romaniuk

Bacteriophage ◽  
2012 ◽  
Vol 2 (2) ◽  
pp. 79-88 ◽  
Author(s):  
Amitava Bandhu ◽  
Tridib Ganguly ◽  
Biswanath Jana ◽  
Amritangshu Chakravarty ◽  
Anindya Biswas ◽  
...  

2018 ◽  
Vol 114 (3) ◽  
pp. 569a
Author(s):  
Julio C. Sanchez ◽  
Liyang Zhang ◽  
Amber Liu ◽  
Miles A. Pufall ◽  
Catherine A. Musselman

2019 ◽  
Vol 116 (3) ◽  
pp. 332a
Author(s):  
Julio C. Sanchez ◽  
Liyang Zhang Zhang ◽  
Miles Pufall ◽  
Catherine Musselman

1995 ◽  
Vol 217 (3) ◽  
pp. 802-810 ◽  
Author(s):  
I.R. Haugan ◽  
B.M. Nilsen ◽  
S. Worland ◽  
L. Olsen ◽  
D.E. Helland

1996 ◽  
Vol 271 (4) ◽  
pp. C1172-C1180 ◽  
Author(s):  
B. H. Jiang ◽  
G. L. Semenza ◽  
C. Bauer ◽  
H. H. Marti

Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein implicated in the transcriptional activation of genes encoding erythropoietin, glycolytic enzymes, and vascular endothelial growth factor in hypoxic mammalian cells. In this study, we have quantitated HIF-1 DNA-binding activity and protein levels of the HIF-1 alpha and HIF-1 beta subunits in human HeLa cells exposed to O2 concentrations ranging from 0 to 20% in the absence or presence of 1 mM KCN to inhibit oxidative phosphorylation and cellular O2 consumption. HIF-1 DNA-binding activity, HIF-1 alpha protein and HIF-1 beta protein each increased exponentially as cells were subjected to decreasing O2 concentrations, with a half maximal response between 1.5 and 2% O2 and a maximal response at 0.5% O2, both in the presence and absence of KCN. The HIF-1 response was greatest over O2 concentrations associated with ischemic/hypoxic events in vivo. These results provide evidence for the involvement of HIF-1 in O2 homeostasis and represent a functional characterization of the putative O2 sensor that initiates hypoxia signal transduction leading to HIF-1 expression.


Sign in / Sign up

Export Citation Format

Share Document