insecticidal protein
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 37)

H-INDEX

35
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Yang Liu ◽  
Siping Han ◽  
Shuo Yang ◽  
Ziqi Chen ◽  
Yuejia Yin ◽  
...  

Abstract Though cry gene transformed crops have successfully revolutionized modern agriculture, it is still necessary to discover new Cry proteins to overcome potential threatens from the development of resistant insect populations. We swapped domain-IIIs with various Cry proteins and engineered seven chimeric proteins, aiming to produce new engineered hybrid insecticidal proteins. Seven recombinant proteins were expressed in Escherichia coli. Three proteins exhibited high toxicity against Asian corn borer in dietary exposure assays. Three hybrid proteins were further transformed to rice (cv. Jijing88) to determine their insecticidal activity. Cry1Ab/Gc hybrid proteins, Cry1Ab being replaced by the domain-III of Cry1Gc, showed significantly more toxic against rice stem borer than others. Furthermore, Cry1Ab/Gc gene was transformed into maize (cv. HiII), then backcrossed into commercial maize inbred lines (cv. Ji853 and Y822), and formulated into Xiangyu 998 hybrid to evaluate their commercial value. Transgenic maize performed significant resistance improvement to the Asian corn borer without affecting the yield, and this new protein did not have adverse effects on the environment. Our result proved domain-swapped could be used as an efficient method for exploring new cry genes and engineered hybrid insecticidal protein. Cry1Ab/Gc provides a new tool for Lepidopteran insects resistant management in rice and maize.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1558
Author(s):  
Seong-Cheol Park ◽  
Jin-Young Kim ◽  
Jong-Kook Lee ◽  
Hye Song Lim ◽  
Hyosuk Son ◽  
...  

Discovering new antifungal agents is difficult, since, unlike bacteria, mammalian and fungal cells are both eukaryotes. An efficient strategy is to consider new antimicrobial proteins that have variety of action mechanisms. In this study, a cDNA encoding Bacillus thuringiensis Vip3Aa protein, a vegetative insecticidal protein, was obtained at the vegetative growth stage; its antifungal activity and mechanism were evaluated using a bacterially expressed recombinant Vip3Aa protein. The Vip3Aa protein demonstrated various concentration- and time-dependent antifungal activities, with inhibitory concentrations against yeast and filamentous fungi ranging from 62.5 to 125 µg/mL and 250 to 500 µg/mL, respectively. The uptake of propidium iodide and cellular distributions of rhodamine-labeled Vip3Aa into fungal cells indicate that its growth inhibition mechanism involves its penetration within cells and subsequent intracellular damage. Furthermore, we discovered that the death of Candida albicans cells was caused by the induction of apoptosis via the generation of mitochondrial reactive oxygen species and binding to nucleic acids. The presence of significantly enlarged Vip3Aa-treated fungal cells indicates that this protein causes intracellular damage. Our findings suggest that Vip3Aa protein has potential applications in the development of natural antimicrobial agents.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1522
Author(s):  
Omaththage P. Perera ◽  
Nathan S. Little ◽  
Heba Abdelgaffar ◽  
Juan Luis Jurat-Fuentes ◽  
Gadi V. P. Reddy

Members of the insect ATP binding cassette transporter subfamily C2 (ABCC2) in several moth species are known as receptors for the Cry1Ac insecticidal protein from Bacillus thuringiensis (Bt). Mutations that abolish the functional domains of ABCC2 are known to cause resistance to Cry1Ac, although the reported levels of resistance vary widely depending on insect species. In this study, the function of the ABCC2 gene as a putative Cry1Ac receptor in Helicoverpa zea, a major pest of over 300 crops, was evaluated using CRISPR/Cas9 to progressively eliminate different functional ABCC2 domains. Results from bioassays with edited insect lines support that mutations in ABCC2 were associated with Cry1Ac resistance ratios (RR) ranging from 7.3- to 39.8-fold. No significant differences in susceptibility to Cry1Ac were detected between H. zea with partial or complete ABCC2 knockout, although the highest levels of tolerance were observed when knocking out half of ABCC2. Based on >500–1000-fold RRs reported in similar studies for closely related moth species, the low RRs observed in H. zea knockouts support that ABCC2 is not a major Cry1Ac receptor in this insect.


Author(s):  
Marcelo R Zakseski ◽  
José G da Silva Filho ◽  
Matheus Rakes ◽  
Juliano de B Pazini ◽  
Ana Paula S A da Rosa ◽  
...  

Abstract Pathogenic assessment of a baculovirus-based biopesticide containing Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV: Baculoviridae: Alphabaculovirus) infecting fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) is reported. In the bioassays, neonates were infected with different doses of SfMNPV applied on Cry1Ac Bt soybean and non-Bt soybean. Our findings indicated that S. frugiperda neonates did not survive at 10 d post infection or develop into adults on Bt and non-Bt soybean sprayed with the field recommended dose of SfMNPV. In contrast, a proportion of the infected neonates developed into adults when infected with lower doses of SfMNPV (50%, 25%, and 10% of field dose) in both Bt and non-Bt soybean. However, S. frugiperda neonates surviving infection at the lowest virus doses on both soybean varieties showed longer neonate-to-pupa and neonate-to-adult periods, lower larval and pupal weights, reduced fecundity, and increased population suppression. Nevertheless, more pronounced pathogenicity of SfMNPV infecting neonates of S. frugiperda were verified on larvae that developed on Bt soybean. These findings revealed that, beyond mortality, the biopesticide containing SfMNPV also causes significant sublethal pathogenic effects on neonates of S. frugiperda developing on Bt and non-Bt soybean and suggested an additive effect among SfMNPV and Cry1Ac insecticidal protein expressed in Bt soybean.


Author(s):  
Omaththage P. Perera ◽  
Nathan S LIttle ◽  
Heba Abdelgaffar ◽  
Juan Luis Jurat-Fuentes ◽  
Gadi V. P. Reddy

Members of the insect ATP binding cassette transporter subfamily C2 (ABCC2) in several moth species are known as receptors for the Cry1Ac insecticidal protein from Bacillus thuringiensis (Bt). Mutations that abolish the functional domains of ABCC2 are known to cause resistance to Cry1Ac, although the reported levels of resistance vary widely depending on insect species. In this study, the function of the ABCC2 gene as putative Cry1Ac receptor in Helicoverpa zea, a major pest of over 300 crops, was evaluated using CRISPR/Cas9 to progressively eliminate different functional ABCC2 domains. Results from bioassays with edited insect lines support that muta-tions in ABCC2 was associated with Cry1Ac resistance ratios (RR) ranging from 7.3- to 39.8-fold. No significant differences in susceptibility to Cry1Ac were detected between H. zea with partial or complete ABCC2 knockout, although highest levels of tolerance were observed when knocking out half of ABCC2. Based on >500-1,000-fold RRs reported in similar studies for closely related moth species, the low RRs observed in H. zea knockouts support that ABCC2 is not a major Cry1Ac receptor in this insect.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tatiana Dvorkina ◽  
Anton Bankevich ◽  
Alexei Sorokin ◽  
Fan Yang ◽  
Boahemaa Adu-Oppong ◽  
...  

Abstract Background Since the prolonged use of insecticidal proteins has led to toxin resistance, it is important to search for novel insecticidal protein genes (IPGs) that are effective in controlling resistant insect populations. IPGs are usually encoded in the genomes of entomopathogenic bacteria, especially in large plasmids in strains of the ubiquitous soil bacteria, Bacillus thuringiensis (Bt). Since there are often multiple similar IPGs encoded by such plasmids, their assemblies are typically fragmented and many IPGs are scattered through multiple contigs. As a result, existing gene prediction tools (that analyze individual contigs) typically predict partial rather than complete IPGs, making it difficult to conduct downstream IPG engineering efforts in agricultural genomics. Methods Although it is difficult to assemble IPGs in a single contig, the structure of the genome assembly graph often provides clues on how to combine multiple contigs into segments encoding a single IPG. Results We describe ORFograph, a pipeline for predicting IPGs in assembly graphs, benchmark it on (meta)genomic datasets, and discover nearly a hundred novel IPGs. This work shows that graph-aware gene prediction tools enable the discovery of greater diversity of IPGs from (meta)genomes. Conclusions We demonstrated that analysis of the assembly graphs reveals novel candidate IPGs. ORFograph identified both already known genes “hidden” in assembly graphs and potential novel IPGs that evaded existing tools for IPG identification. As ORFograph is fast, one could imagine a pipeline that processes many (meta)genomic assembly graphs to identify even more novel IPGs for phenotypic testing than would previously be inaccessible by traditional gene-finding methods. While here we demonstrated the results of ORFograph only for IPGs, the proposed approach can be generalized to any class of genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mamta Gupta ◽  
Harish Kumar ◽  
Sarvjeet Kaur

Bacillus thuringiensis (Bt) bacterium is found in various ecological habitats, and has natural entomo-pesticidal properties, due to the production of crystalline and soluble proteins during different growth phases. In addition to Cry and Cyt proteins, this bacterium also produces Vegetative insecticidal protein (Vip) during its vegetative growth phase, which is considered an excellent toxic candidate because of the difference in sequence homology and receptor sites from Cry proteins. Vip proteins are referred as second-generation insecticidal proteins, which can be used either alone or in complementarity with Cry proteins for the management of various detrimental pests. Among these Vip proteins, Vip1 and Vip2 act as binary toxins and have toxicity toward pests belonging to Hemiptera and Coleoptera orders, whereas the most important Vip3 proteins have insecticidal activity against Lepidopteran pests. These Vip3 proteins are similar to Cry proteins in terms of toxicity potential against susceptible insects. They are reported to be toxic toward pests, which can’t be controlled with Cry proteins. The Vip3 proteins have been successfully pyramided along with Cry proteins in transgenic rice, corn, and cotton to combat resistant pest populations. This review provides detailed information about the history and importance of Vip proteins, their types, structure, newly identified specific receptors, and action mechanism of this specific class of proteins. Various studies conducted on Vip proteins all over the world and the current status have been discussed. This review will give insights into the significance of Vip proteins as alternative promising candidate toxic proteins from Bt for the management of pests in most sustainable manner.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mingyuan Zhou ◽  
Zhenyu Liu ◽  
Linan Li ◽  
Yuan Chen ◽  
Xiang Zhang ◽  
...  

Reproductive organs of Bacillus thuringiensis transgenic cotton, which contribute to cotton final yield, have low insect resistant efficacy, so it is important to improve their insect resistance. This study was conducted to find out the impact of different urea spray doses on the expression of Cry1A protein in boll shell of Bt cotton (Sikang 1 and Sikang 3), and nitrogen metabolism in this process was also studied to uncover the physiological mechanism. The experiment with six urea doses was organized during peak boll stage in 2017 and 2018. The results showed that urea spray could significantly increase boll shell insecticidal protein contents in both cultivars, with the highest Bt protein content observed at 28–32 kg ha−1 urea dose. In addition, urea spray increased the contents of soluble protein and free amino acid and the activities of GS, GOGAT, GOT, and GPT, but decreased the activities of peptidase and protease in boll shell. Correlation analysis showed that the amount of boll shell Bt protein was positively correlated with levels of soluble protein and amino acid, and activities of GS, GOGAT, GOT, and GPT, but negatively correlated with peptidase and protease activities. Thus, this study demonstrated that higher protein synthesis ability and lower proteolysis ability were related to increased Bt protein content in urea-sprayed boll shell.


2021 ◽  
pp. 107597
Author(s):  
Claudia Pérez Ortega ◽  
Chris Leininger ◽  
Jennifer Barry ◽  
Brad Poland ◽  
Nasser Yalpani ◽  
...  

Author(s):  
Yue-ming Ding ◽  
Jing Wang ◽  
Lin Wang ◽  
Ji-Guo Gao ◽  
Rong-Mei Liu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document