The Extensive Nitration of Neurofilament Light Chain in the Hippocampus Is Associated with the Cognitive Impairment Induced by Amyloid β in Mice

2008 ◽  
Vol 327 (1) ◽  
pp. 137-147 ◽  
Author(s):  
Tursun Alkam ◽  
Atsumi Nitta ◽  
Hiroyuki Mizoguchi ◽  
Akio Itoh ◽  
Rina Murai ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Seok Baek ◽  
Myung Jun Lee ◽  
Han-Kyeol Kim ◽  
Chul Hyoung Lyoo

AbstractFull dynamics of biofluid biomarkers have been unknown in patients with Parkinson’s disease (PD). Using data from 396 PD patients and 182 controls in the Parkinson's Progression Markers Initiative (PPMI) database, we estimated long-term temporal trajectories of CSF α-synuclein (α-syn), amyloid-β (Aβ), total tau (t-tau), phosphorylated tau (p-tau) and serum neurofilament light chain (NfL) by integrating function between the baseline levels and annual changes. At baseline, PD patients showed lower CSF α-syn, Aβ, t-tau and p-tau levels than those of the controls. In all PD patients, CSF α-syn and Aβ decreased in a negative exponential pattern before the onset of motor symptoms, whereas CSF t-tau and p-tau, and serum NfL increased. Patients with cognitive impairment exhibited faster decline of Aβ and α-syn and faster rise of t-tau, p-tau and NfL, when compared to those without. Similarly, low Aβ group showed earlier decline of α-syn, faster rise of t-tau, p-tau and NfL, and faster decline of cognitive performances, when compared to high Aβ group. Our results suggest that longitudinal changes in biomarkers can be influenced by cognitive impairment and Aβ burden at baseline. PD patients with Aβ pathology may be associated with early appearance of α-synuclein pathology, rapid progression of axonal degeneration and neurodegeneration, and consequently greater cognitive decline.


2018 ◽  
Vol 63 (2) ◽  
pp. 479-487 ◽  
Author(s):  
Pratishtha Chatterjee ◽  
Kathryn Goozee ◽  
Hamid R. Sohrabi ◽  
Kaikai Shen ◽  
Tejal Shah ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Jamie Toombs ◽  
Henrik Zetterberg

This scientific commentary refers to ‘Plasma total-tau, neurofilament light chain and amyloid-β levels and risk of dementia: a population-based study’ by de Wolf et al. (https://doi.org/10.1093/brain/awaa054), and ‘Relationship of amyloid-b1–42 in blood and brain amyloid: Ginkgo Evaluation of Memory Study’ by Lopez et al. (https://doi.org/10.1093/braincomms/fcz038), two papers that illustrate these latest developments.


2019 ◽  
Vol 266 (9) ◽  
pp. 2157-2163 ◽  
Author(s):  
Lorenzo Gaetani ◽  
Nicola Salvadori ◽  
Viviana Lisetti ◽  
Paolo Eusebi ◽  
Andrea Mancini ◽  
...  

Brain ◽  
2020 ◽  
Author(s):  
Joana B Pereira ◽  
Shorena Janelidze ◽  
Rik Ossenkoppele ◽  
Hlin Kvartsberg ◽  
Ann Brinkmalm ◽  
...  

Abstract It is currently unclear how amyloid-β and tau deposition are linked to changes in synaptic function and axonal structure over the course of Alzheimer’s disease. Here, we assessed these relationships by measuring presynaptic (synaptosomal-associated protein 25, SNAP25; growth-associated protein 43, GAP43), postsynaptic (neurogranin, NRGN) and axonal (neurofilament light chain) markers in the CSF of individuals with varying levels of amyloid-β and tau pathology based on 18F-flutemetamol PET and 18F-flortaucipir PET. In addition, we explored the relationships between synaptic and axonal markers with cognition as well as functional and anatomical brain connectivity markers derived from resting-state functional MRI and diffusion tensor imaging. We found that the presynaptic and postsynaptic markers SNAP25, GAP43 and NRGN are elevated in early Alzheimer’s disease i.e. in amyloid-β-positive individuals without evidence of tau pathology. These markers were associated with greater amyloid-β pathology, worse memory and functional changes in the default mode network. In contrast, neurofilament light chain was abnormal in later disease stages, i.e. in individuals with both amyloid-β and tau pathology, and correlated with more tau and worse global cognition. Altogether, these findings support the hypothesis that amyloid-β and tau might have differential downstream effects on synaptic and axonal function in a stage-dependent manner, with amyloid-related synaptic changes occurring first, followed by tau-related axonal degeneration.


Neurology ◽  
2021 ◽  
Author(s):  
Anna H. Boerwinkle ◽  
Julie K. Wisch ◽  
Charles D. Chen ◽  
Brian A. Gordon ◽  
Omar Hameed Butt ◽  
...  

Objective:Temporal correlations between CSF and neuroimaging (PET and MRI) measures of amyloid, tau, and neurodegeneration were evaluated in relation to Alzheimer disease (AD) progression.Methods:Three hundred seventy-one cognitively unimpaired and impaired participants enrolled in longitudinal studies of AD had both CSF (amyloid-β42, phosphorylated tau181, total tau, and neurofilament light chain) and neuroimaging (PiB PET, flortaucipir PET, and structural MRI) measures. The pairwise time interval between CSF and neuroimaging measures was binned into two year periods. Spearman correlations identified the time bin when CSF and neuroimaging measures most strongly correlated. CSF and neuroimaging measures were then binarized as biomarker-positive or biomarker-negative using Gaussian mixture modelling. Cohen’s kappa coefficient identified the time bin when CSF measures best agreed with corresponding neuroimaging measures when determining amyloid, tau, and neurodegeneration biomarker positivity.Results:CSF amyloid-β42 and PiB PET showed maximal correlation when collected within six years of each other (R ≈ -0.5). CSF phosphorylated tau181 and flortaucipir PET showed maximal correlation when CSF was collected four to eight years prior to PET (R ≈ 0.4). CSF neurofilament light chain and cortical thickness showed low correlation, regardless of time interval (Ravg ≈ -0.3). Similarly, CSF total tau and cortical thickness had low correlation, regardless of time interval (Ravg < -0.2).Conclusions:CSF amyloid-β42 and PiB PET best agree when acquired in close temporal proximity, whereas CSF phosphorylated tau precedes flortaucipir PET by four to eight years. CSF and neuroimaging measures of neurodegeneration have low correspondence and are not interchangeable at any time interval.


2020 ◽  
Author(s):  
Bin Jiao ◽  
Hui Liu ◽  
Lina Guo ◽  
Xinxin Liao ◽  
Yafang Zhou ◽  
...  

Abstract BackgroundRobust studies have focused on blood-based biomarkers for diagnosis of Alzheimer’s disease (AD), while the results were still controversary and failed verified in different cohorts. The aim of this study was to detect the levels of plasma amyloid β (Aβ), total tau (t-tau), and neurofilament light chain (NfL) in patients with AD and cognitive normal (CN) subjects, and clarify their associations with Aβ, t-tau, and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) as well as brain amyloid PET, and calculate the diagnostic efficiency of these characteristics regarding AD.Methods Plasma Aβ42, Aβ40, t-tau and NfL levels were detected by single-molecule array (Simoa) in 379 AD patients and 153 CN subjects. Additionally, lumbar puncture was conducted in 125 AD patients to detect Aβ42, Aβ40, t-tau, and p-tau levels. Brain amyloid PET was performed in 52 AD patients to identify brain amyloid deposition levels. Correlation analysis were performed between plasma biomarkers and typical biomarkers of AD, including CSF core biomarkers and amyloid PET burden. Finally, the diagnostic value of plasma biomarkers was further assessed by receiver operating characteristic (ROC) curve.ResultsCompared with the CN group, plasma Aβ42 and Aβ42/Aβ40 levels were significantly lower in AD patients, while Aβ40, t-tau and NfL levels were higher in AD patients. Among the AD patients, plasma Aβ42 was positively correlated with CSF Aβ42 (r = 0.195, p = 0.03) and Aβ42/Aβ40 (r = 0.208, p = 0.04). Moreover, plasma NfL was positively correlated with age, disease course and severity. The diagnostic model with combined plasma Aβ42, t-tau, and NfL levels controlled for age and APOE genotype showed the best performance to identify AD (area under the curve (AUC) = 0.88, sensitivity = 82.84%, specificity = 81.69%, cutoff value = 0.64).ConclusionsTrends revealed by core biomarkers were generally consistent in AD patients’ plasma and CSF. Combining plasma biomarkers can provide comparatively high AD diagnostic performance.


2019 ◽  
Vol 2 (3) ◽  
pp. 7-8
Author(s):  
Nella Rosyalina Damayanti ◽  
Divayari Gardiani

Latar Belakang: Chronic Kidney Disease (CKD) dapat menyebabkan cognitive impairment yang dapat menurunkan kualitas hidup dan kesejahteraan emosional pasien. Neurofilament Light Chain (NF-L) merupakan protein yang terletak di aksoplasma yang berperan menjaga struktur neuron. Diskusi: Defisit kognitif yang terjadi pada pasien dengan CKD diakibatkan toksin uremik yang menyebabkan cedera saraf. Prevalensi defisit kognitif berkisar 20-50% pada pasien CKD moderat dan 70% pada pasien CKD berat/ menjalani dialisis. Penurunan fungsi kognitif memiliki korelasi positif dengan penurunan eGFR pada pasien CKD. Kadar NF-L serum ditemukan mengalami peningkatan pada pasien setelah cedera akut pada otak seperti iskemia, perdarahan, dan pada pasien dengan penyakit neurodegeneratif seperti Alzheimer, dibandingkan pada individu sehat. Kadar NF-L serum dapat dideteksi dengan menggunakan pengujian single molecule array (Simoa). Simpulan: Pemeriksaan NF-L dapat dijadikan biomarker terjadinya defisit kognitif pada pasien CKD. Kata Kunci: Chronic Kidney Disease, Neurofilament Light Chain, Fungsi Kognitif, Biomarker


Sign in / Sign up

Export Citation Format

Share Document