scholarly journals Nitro-Oleic Acid Inhibits Firing and Activates TRPV1- and TRPA1-Mediated Inward Currents in Dorsal Root Ganglion Neurons from Adult Male Rats

2010 ◽  
Vol 333 (3) ◽  
pp. 883-895 ◽  
Author(s):  
A. Sculptoreanu ◽  
F. A. Kullmann ◽  
D. E. Artim ◽  
F. A. Bazley ◽  
F. Schopfer ◽  
...  
1997 ◽  
Vol 77 (5) ◽  
pp. 2573-2584 ◽  
Author(s):  
Jane H. Crawford ◽  
John F. Wootton ◽  
Guy R. Seabrook ◽  
Roderick H. Scott

Crawford, Jane H., John F. Wootton, Guy R. Seabrook, and Roderick H. Scott. Activation of Ca2+-dependent currents in dorsal root ganglion neurons by metabotropic glutamate receptors and cyclic ADP-ribose precursors. J. Neurophysiol. 77: 2573–2584, 1997. Cultured dorsal root ganglion neurons were voltage clamped at −90 mV to study the effects of intracellular application of nicotinamide adenine dinucleotide (βNAD+), intracellular flash photolysis of caged 3′,5′-cyclic guanosine monophosphate (cGMP), and metabotropic glutamate receptor activation. The activation of metabotropic glutamate receptors evoked inward Ca2+-dependent currents in most cells. This was mimicked both by intracellular flash photolysis of the caged axial isomer of cGMP [P-1-(2-nitrophenyl)ethyl cGMP] and intracellular application of βNAD+. Whole cell Ca2+-activated inward currents were used as a physiological index of raised intracellular Ca2+ levels. Extracellular application of 10 μM glutamate evoked the activation of Ca2+-dependent inward currents, thus reflecting a rise in intracellular Ca2+ levels. Similar inward currents were also activated after isolation of metabotropic glutamate receptor activation by application of 10 μM glutamate in the presence of 20 μM 6-cyano-7-nitroquinoxaline-2,3-dione and 20 μM dizocilpine maleate (MK 801), or by extracellular application of 10 μM trans-(1 S,3 R)-1-amino-1,3-cyclopentanedicarboxylic acid. Intracellular photorelease of cGMP, from its caged axial isomer, in the presence of βNAD+ was also able to evoke similar Ca2+-dependent inward currents. Intracellular application of βNAD+ alone produced a concentration-dependent effect on inward current activity. Responses to both metabotropic glutamate receptor activation and cGMP were suppressed by intracellular ryanodine, chelation of intracellular Ca2+ by bis-( o-aminophenoxy)- N,N,N′,N′-tetraacetic acid, and depletion of intracellular Ca2+ stores, but were insensitive to the removal of extracellular Ca2+. Therefore both cGMP, possibly via a mechanism that involves βNAD+ and/or cyclic ADP-ribose, and glutamate can mobilize intracellular Ca2+ from ryanodine-sensitive stores in sensory neurons.


2020 ◽  
Vol 18 (10) ◽  
pp. 791-797
Author(s):  
Qiong Xiang ◽  
Jing-Jing Li ◽  
Chun-Yan Li ◽  
Rong-Bo Tian ◽  
Xian-Hui Li

Background: Our previous study has indicated that somatostatin potently inhibits neuropathic pain through the activation of its type 2 receptor (SSTR2) in mouse dorsal root ganglion and spinal cord. However, the underlying mechanism of this activation has not been elucidated clearly Objective: The aim of this study is to perform the pharmacological studies on the basis of sciatic nerve-pinch mice model and explore the underlying mechanism involving SSTR2. Methods: On the basis of a sciatic nerve-pinch injury model, we aimed at comparing the painful behavior and dorsal root ganglion neurons neurochemical changes after the SSTR2 antibody (anti- SSTR2;5μl,1μg/ml) administration in the mouse. Results: After pinch nerve injury, we found that the mechanical hyperalgesia and severely painful behavior (autotomy) were detected after the application of SSTR2 antibody (anti-SSTR2; 5μl, 1μg/ml) on the pinch-injured nerve. The up-regulated phosphorylated ERK (p-ERK) expression and the apoptotic marker (i.e., Bax) were significantly decreased in DRGs after anti-SSTR2 treatment. Conclusion: The current data suggested that inhibitory changes in proteins from the apoptotic pathway in anti-SSTR2-treated groups might be taking place to overcome the protein deficits caused by SSTR2 antibody and supported the new therapeutic intervention with SSTR2 antagonist for neuronal degeneration following nerve injury.


Sign in / Sign up

Export Citation Format

Share Document