scholarly journals Organic Anion Transporter 2–Mediated Hepatic Uptake Contributes to the Clearance of High-Permeability–Low-Molecular-Weight Acid and Zwitterion Drugs: Evaluation Using 25 Drugs

2018 ◽  
Vol 367 (2) ◽  
pp. 322-334 ◽  
Author(s):  
Emi Kimoto ◽  
Sumathy Mathialagan ◽  
Laurie Tylaska ◽  
Mark Niosi ◽  
Jian Lin ◽  
...  
2000 ◽  
Vol 276 (13) ◽  
pp. 9626-9630 ◽  
Author(s):  
Yunhai Cui ◽  
Jörg König ◽  
Inka Leier ◽  
Ulrike Buchholz ◽  
Dietrich Keppler

2010 ◽  
Vol 88 (6) ◽  
pp. 682-691 ◽  
Author(s):  
J. Craig Hartman ◽  
Kenneth Brouwer ◽  
Arun Mandagere ◽  
Lawrence Melvin ◽  
Richard Gorczynski

To evaluate potential mechanisms of clinical hepatotoxicity, 4 endothelin receptor antagonists (ERAs) were examined for substrate activity and inhibition of hepatic uptake and efflux transporters in sandwich-cultured human hepatocytes. The 4 transporters studied were sodium-dependent taurocholate cotransporter (NTCP), organic anion transporter (OATP), bile salt export pump (BSEP), and multidrug resistance-associated protein 2 (MRP2). ERA transporter inhibition was examined using the substrates taurocholate (for NTCP and BSEP), [3H]estradiol-17β-d-glucuronide (for OATP), and [2-d-penicillamine, 5-d-penicillamine]enkephalin (for MRP2). ERA substrate activity was evaluated using probe inhibitors ritonavir (OATP and BSEP), bromosulfalein (OATP), erythromycin (P-glycoprotein), probenecid (MRP2 and OATP), and cyclosporin (NTCP). ERAs were tested at 2, 20, and 100 µmol·L–1 for inhibition and at 2 µmol·L–1 as substrates. OATP, NTCP, or BSEP transport activity was not reduced by ambrisentan or darusentan. Bosentan and sitaxsentan attenuated NTCP transport at higher concentrations. Only sitaxsentan decreased OATP transport (52%), and only bosentan reduced BSEP transport (78%). MRP2 transport activity was unaltered. OATP inhibitors decreased influx of all ERAs. Darusentan influx was least affected (84%–100% of control), whereas bosentan was most affected (32%–58% of control). NTCP did not contribute to influx of ERAs. Only bosentan and darusentan were shown as substrates for both BSEP and P-glycoprotein efflux. All ERAs tested were substrates for at least one hepatic transporter. Bosentan and sitaxsentan, but not ambrisentan and darusentan, inhibited human hepatic transporters, which provides a potential mechanism for the increased hepatotoxicity observed for these agents in the clinical setting.


2018 ◽  
Vol 364 (3) ◽  
pp. 390-398 ◽  
Author(s):  
Yi-an Bi ◽  
Sumathy Mathialagan ◽  
Laurie Tylaska ◽  
Myra Fu ◽  
Julie Keefer ◽  
...  

2004 ◽  
Vol 42 (08) ◽  
Author(s):  
A Geier ◽  
CG Dietrich ◽  
C Gartung ◽  
F Lammert ◽  
HE Wasmuth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document