Storm Expert to Lead U.S. Weather Service

2021 ◽  
Keyword(s):  
2016 ◽  
Vol 15 (4) ◽  
pp. 418-445 ◽  
Author(s):  
Jamie L. Pietruska

This article examines the mutually reinforcing imperatives of government science, capitalism, and American empire through a history of the U.S. Weather Bureau's West Indian weather service at the turn of the twentieth century. The original impetus for expanding American meteorological infrastructure into the Caribbean in 1898 was to protect naval vessels from hurricanes, but what began as a measure of military security became, within a year, an instrument of economic expansion that extracted climatological data and produced agricultural reports for American investors. This article argues that the West Indian weather service was a project of imperial meteorology that sought to impose a rational scientific and bureaucratic order on a region that American officials considered racially and culturally inferior, yet relied on the labor of local observers and Cuban meteorological experts in order to do so. Weather reporting networks are examined as a material and symbolic extension of American technoscientific power into the Caribbean and as a knowledge infrastructure that linked the production of agricultural commodities in Cuba and Puerto Rico to the world of commodity exchange in the United States.


Author(s):  
Narayan K. Shrestha ◽  
Taimoor Akhtar ◽  
Uttam Ghimire ◽  
Ramesh P. Rudra ◽  
Pradeep K. Goel ◽  
...  

Author(s):  
Evan S. Bentley ◽  
Richard L. Thompson ◽  
Barry R. Bowers ◽  
Justin G. Gibbs ◽  
Steven E. Nelson

AbstractPrevious work has considered tornado occurrence with respect to radar data, both WSR-88D and mobile research radars, and a few studies have examined techniques to potentially improve tornado warning performance. To date, though, there has been little work focusing on systematic, large-sample evaluation of National Weather Service (NWS) tornado warnings with respect to radar-observable quantities and the near-storm environment. In this work, three full years (2016–2018) of NWS tornado warnings across the contiguous United States were examined, in conjunction with supporting data in the few minutes preceding warning issuance, or tornado formation in the case of missed events. The investigation herein examines WSR-88D and Storm Prediction Center (SPC) mesoanalysis data associated with these tornado warnings with comparisons made to the current Warning Decision Training Division (WDTD) guidance.Combining low-level rotational velocity and the significant tornado parameter (STP), as used in prior work, shows promise as a means to estimate tornado warning performance, as well as relative changes in performance as criteria thresholds vary. For example, low-level rotational velocity peaking in excess of 30 kt (15 m s−1), in a near-storm environment which is not prohibitive for tornadoes (STP > 0), results in an increased probability of detection and reduced false alarms compared to observed NWS tornado warning metrics. Tornado warning false alarms can also be reduced through limiting warnings with weak (<30 kt), broad (>1nm) circulations in a poor (STP=0) environment, careful elimination of velocity data artifacts like sidelobe contamination, and through greater scrutiny of human-based tornado reports in otherwise questionable scenarios.


2018 ◽  
Vol 33 (6) ◽  
pp. 1501-1511 ◽  
Author(s):  
Harold E. Brooks ◽  
James Correia

Abstract Tornado warnings are one of the flagship products of the National Weather Service. We update the time series of various metrics of performance in order to provide baselines over the 1986–2016 period for lead time, probability of detection, false alarm ratio, and warning duration. We have used metrics (mean lead time for tornadoes warned in advance, fraction of tornadoes warned in advance) that work in a consistent way across the official changes in policy for warning issuance, as well as across points in time when unofficial changes took place. The mean lead time for tornadoes warned in advance was relatively constant from 1986 to 2011, while the fraction of tornadoes warned in advance increased through about 2006, and the false alarm ratio slowly decreased. The largest changes in performance take place in 2012 when the default warning duration decreased, and there is an apparent increased emphasis on reducing false alarms. As a result, the lead time, probability of detection, and false alarm ratio all decrease in 2012. Our analysis is based, in large part, on signal detection theory, which separates the quality of the warning system from the threshold for issuing warnings. Threshold changes lead to trade-offs between false alarms and missed detections. Such changes provide further evidence for changes in what the warning system as a whole considers important, as well as highlighting the limitations of measuring performance by looking at metrics independently.


Sign in / Sign up

Export Citation Format

Share Document