scholarly journals Shrinking dinosaurs and the evolution of endothermy in birds

2020 ◽  
Vol 6 (1) ◽  
pp. eaaw4486 ◽  
Author(s):  
Enrico L. Rezende ◽  
Leonardo D. Bacigalupe ◽  
Roberto F. Nespolo ◽  
Francisco Bozinovic

The evolution of endothermy represents a major transition in vertebrate history, yet how and why endothermy evolved in birds and mammals remains controversial. Here, we combine a heat transfer model with theropod body size data to reconstruct the evolution of metabolic rates along the bird stem lineage. Results suggest that a reduction in size constitutes the path of least resistance for endothermy to evolve, maximizing thermal niche expansion while obviating the costs of elevated energy requirements. In this scenario, metabolism would have increased with the miniaturization observed in the Early-Middle Jurassic (~180 to 170 million years ago), resulting in a gradient of metabolic levels in the theropod phylogeny. Whereas basal theropods would exhibit lower metabolic rates, more recent nonavian lineages were likely decent thermoregulators with elevated metabolism. These analyses provide a tentative temporal sequence of the key evolutionary transitions that resulted in the emergence of small, endothermic, feathered flying dinosaurs.

2014 ◽  
Vol 281 (1783) ◽  
pp. 20133122 ◽  
Author(s):  
Jonathan L. Payne ◽  
Noel A. Heim ◽  
Matthew L. Knope ◽  
Craig R. McClain

Brachiopods and bivalves feed in similar ways and have occupied the same environments through geological time, but brachiopods were far more diverse and abundant in the Palaeozoic whereas bivalves dominate the post-Palaeozoic, suggesting a transition in ecological dominance 250 Ma. However, diversity and abundance data alone may not adequately describe key changes in ecosystem function, such as metabolic activity. Here, we use newly compiled body size data for 6066 genera of bivalves and brachiopods to calculate metabolic rates and revisit this question from the perspective of energy use, finding that bivalves already accounted for a larger share of metabolic activity in Palaeozoic oceans. We also find that the metabolic activity of bivalves has increased by more than two orders of magnitude over this interval, whereas brachiopod metabolic activity has declined by more than 50%. Consequently, the increase in bivalve energy metabolism must have occurred via the acquisition of new food resources rather than through the displacement of brachiopods. The canonical view of a mid-Phanerozoic transition from brachiopod to bivalve dominance results from a focus on taxonomic diversity and numerical abundance as measures of ecological importance. From a metabolic perspective, the oceans have always belonged to the clams.


2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


2006 ◽  
Author(s):  
Filip Kitanoski ◽  
Wolfgang Puntigam ◽  
Martin Kozek ◽  
Josef Hager

1992 ◽  
Vol 114 (4) ◽  
pp. 847-857 ◽  
Author(s):  
J. H. Wagner ◽  
B. V. Johnson ◽  
R. A. Graziani ◽  
F. C. Yeh

Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large-scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges that are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat transfer increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.


2021 ◽  
Vol 71 ◽  
pp. 104456
Author(s):  
Zhuoran Zhang ◽  
Pratik Krishnan ◽  
Zeren Jiao ◽  
M. Sam Mannan ◽  
Qingsheng Wang

2015 ◽  
Vol 1092-1093 ◽  
pp. 534-538
Author(s):  
Xiong Chen ◽  
Hai Feng Xue ◽  
Hua Liang

Thermal protection materials are required to preserve the metal components of motor that suffer severe heat load. The research on thermal response of insulation of ramjet combustion chamber was carried out by the ground test and numerical simulation. During the working time of the ramjet, the back-face temperature of the thermal protection material was measured. The scanning electron microscope of samples was investigated. The calculation of thermo-chemical flow was solved by the CFD software FLUENT to provide the heat load boundary for simulation of heat transfer of EPDM insulation. The heat transfer model was solved by the FEA software ANSYS. Comparison of the temperature profile at the ablating surface between calculation and measurement shows the two results agree with each other. The simulation results can provide the temperature rising trend of insulation in a certain extent.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Naveen Janjanam ◽  
Rajesh Nimmagadda ◽  
Lazarus Godson Asirvatham ◽  
R. Harish ◽  
Somchai Wongwises

AbstractTwo-dimensional conjugate heat transfer performance of stepped lid-driven cavity was numerically investigated in the present study under forced and mixed convection in laminar regime. Pure water and Aluminium oxide (Al2O3)/water nanofluid with three different nanoparticle volume concentrations were considered. All the numerical simulations were performed in ANSYS FLUENT using homogeneous heat transfer model for Reynolds number, Re = 100 to 500 and Grashof number, Gr = 5000, 13,000 and 20,000. Effective thermal conductivity of the Al2O3/water nanofluid was evaluated by considering the Brownian motion of nanoparticles which results in 20.56% higher value for 3 vol.% Al2O3/water nanofluid in comparison with the lowest thermal conductivity value obtained in the present study. A solid region made up of silicon is present underneath the fluid region of the cavity in three geometrical configurations (forward step, backward step and no step) which results in conjugate heat transfer. For higher Re values (Re = 500), no much difference in the average Nusselt number (Nuavg) is observed between forced and mixed convection. Whereas, for Re = 100 and Gr = 20,000, Nuavg value of mixed convection is 24% higher than that of forced convection. Out of all the three configurations, at Re = 100, forward step with mixed convection results in higher heat transfer performance as the obtained interface temperature is lower than all other cases. Moreover, at Re = 500, 3 vol.% Al2O3/water nanofluid enhances the heat transfer performance by 23.63% in comparison with pure water for mixed convection with Gr = 20,000 in forward step.


Sign in / Sign up

Export Citation Format

Share Document