scholarly journals In situ recruitment of regulatory T cells promotes donor-specific tolerance in vascularized composite allotransplantation

2020 ◽  
Vol 6 (11) ◽  
pp. eaax8429 ◽  
Author(s):  
James D. Fisher ◽  
Wensheng Zhang ◽  
Stephen C. Balmert ◽  
Ali M. Aral ◽  
Abhinav P. Acharya ◽  
...  

Vascularized composite allotransplantation (VCA) encompasses face and limb transplantation, but as with organ transplantation, it requires lifelong regimens of immunosuppressive drugs to prevent rejection. To achieve donor-specific immune tolerance and reduce the need for systemic immunosuppression, we developed a synthetic drug delivery system that mimics a strategy our bodies naturally use to recruit regulatory T cells (Treg) to suppress inflammation. Specifically, a microparticle-based system engineered to release the Treg-recruiting chemokine CCL22 was used in a rodent hindlimb VCA model. These “Recruitment-MP” prolonged hindlimb allograft survival indefinitely (>200 days) and promoted donor-specific tolerance. Recruitment-MP treatment enriched Treg populations in allograft skin and draining lymph nodes and enhanced Treg function without affecting the proliferative capacity of conventional T cells. With implications for clinical translation, synthetic human CCL22 induced preferential migration of human Treg in vitro. Collectively, these results suggest that Recruitment-MP promote donor-specific immune tolerance via local enrichment of suppressive Treg.

2020 ◽  
Vol 1 (1) ◽  
pp. 8-14
Author(s):  
Victor Tunje Jeza ◽  
Chen Jun ◽  
Wu Xiongwen

Currently, general immunosuppressive drugs are used to maintain tolerance to allografts. However, these drugs have a major drawback of rendering the patient susceptible to infections and other side effects like malignancy and drug related toxicities with an overall rejection of the organ at some point. Previous studies have shown that MHC-Ig dimers may suppress alloresponsive T cells in a donor specific manner in vitro. This work aimed to answer the question as to whether these dimers will surmount rejection through the direct mechanism of allorecognition by suppressing alloreactive CD8+ T cells. To do this, we first identified two mice models with a single mismatch at the MHC loci. We found and procured white albino NOD mice which happened to be transgenic for HLA-A2 and HLA-A24 molecules. We then constructed a human-mouse hybrid HLA-A2-Ig dimer by overlap-PCR to join parts of two different already cloned plasmids to form the full length HLA-A2β2α1α2murineα3 insert which was then cloned to pcDNA3.1 to form pcDNA3.1HLA-A2β2α1α2murineα3. The IgG2bFc region was added by restriction digestion and ligation to form the plasmid pcDNA3.1HLA-A2β2α1α2murineα3IgG2bFc. Sequencing was done and confirmed that the construction and cloning were successful. The plasmid pcDNA3.1HLA-A2β2α1α2murineα3IgG2bFc was then transfected by electroporation to J558L cells. Screening was done using G418 for 4 weeks in cell culture. We purified the dimer by affinity chromatography and then used ELISA to confirm expression of the dimer. The purified dimer was then used in 1-way MLC experiments where responder cells were mice cells expressing HLA-A24 molecules while stimulator cells were mice cells expressing HLA-A2 molecules. Cell samples were gated on anti-mouse CD3-PE/CY7, anti-mouse CD4-PE, and anti-mouse CD8-APC/CY7. Cell proliferation was analysed using CFSE. Our results showed that the proliferation of CD4+ T cells was inhibited in the presence of the dimer. This work is crucial for subsequent studies aiming to search for induction of donor specific tolerance.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2526-2526 ◽  
Author(s):  
Marianne Delville ◽  
Emmanuelle Six ◽  
Florence Bellier ◽  
Nelly Sigrist ◽  
David Zemmour ◽  
...  

Abstract IPEX (Immunodysregulation Polyendocrinopathy Enteropathy X-linked) syndrome is the prototype of primary immunodeficiency with prevailing autoimmunity. The disease is caused by mutations in the gene encoding the transcription factor forkhead box P3 (FOXP3), which leads to the loss of function of thymus-derived CD4+CD25+ regulatory T (tTreg) cells. In IPEX patients, the absence of a functional Treg cell compartment leads to the development of multiple autoimmune manifestations (including severe enteropathy, type 1 diabetes and eczema) usually in the first months or years of life. The current treatments for IPEX syndrome include immunosuppressive, hormone replacement therapies. Unfortunately, immunosuppressive treatments are usually only partially effective and their dose is often limited because of the occurrence of infectious complications and toxicity. Currently, the only curative treatment for IPEX syndrome is allogeneic hematopoietic stem cell transplantation (HSCT). The absence of an HLA-compatible donor for all patients and their poor clinical condition particularly expose them to a risk of mortality when HLA partially compatible donors are used. For all these reasons, effective alternative therapeutic approaches are urgently needed. Various preclinical studies have shown that partial donor chimerism is sufficient for complete remission meaning that a small number of functional natural Treg is sufficient to restore immune tolerance. This suggests that a gene therapy approach designed to selectively induce a Treg program in T cells by expressing FOXP3 could be a promising potential cure for IPEX. However, several issues might compromise the success of this strategy: (i) will the introduction of FOXP3 alone be sufficient to induce a stable Treg program or will it require additional transcription factors to lock the Treg function and sustain the stability of transduced cells? (ii) Targeting effector CD4+ T cells might be an issue in terms of T-cell receptor repertoire, since the TCR repertoire of nTregs is different from the one of effector CD4+ T cells, (iii) will FOXP3-transduced T cells be able to migrate to appropriate tissues to control auto-immune reactions?, (iv) infusion of nTreg prevents the appearance of some autoimmune manifestations in murine models, however the infusion was done in prophylaxis before the appearance of the symptoms. In order to address these questions, we have developed a mouse scurfy model to evaluate the functional and stability of the correction in vivo in parallel to the characterization of gene corrected human CD4 T cells from IPEX patients. Scurfy mice develop a disease very close to human pathology due to a spontaneous mutation of Foxp3 gene. We improved Scurfy mice model to improve animal production and increase the timeline of treatement. We demonstrated that FOXP3 gene transfer into murine CD4+ T cells enable the generation of potent regulatory T cells. Indeed we showed the functional suppressive properties of the generated CD4-FOXP3 cells in an optimized flow-cytometry-based in vitro suppression assay. The ability of CD4-FOXP3 to prevent Scurfy disease by adoptive transfer in the first days of life is currently under evaluation. Similarly in humans, we demonstrated that FOXP3 gene transfer into CD4+ T cells from IPEX patients enable the generation of potent regulatory T cells, as shown through the functional in vitro suppressive properties of the generated CD4IPEX-FOXP3. Moreover comparison of the transcriptional profile of these regulatory CD4IPEX-FOXP3 cells to natural Treg by RNA-seq analysis demonstrated a good repression of cytokine transcripts (IL4/5/13/CSF2, CD40L), a strong repression of IL7R, a strong induction of IL1R2, and a moderate activation of typical Treg genes (IL2RA, IKZF2, CTLA4). Therefore, the introduction of a functional copy of the FOXP3 gene into an IPEX patient's T cells may be enough to restore immune tolerance and thus avoid the complications of allogenic HSCT. We will also discuss the challenge of generating a large, homogenous and stable population of cells in vitro for adoptive transfer and whether it can ensure long-term disease correction without generating a context of generalized immunosuppression. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3514-3514
Author(s):  
Yong Chan Kim ◽  
Ai-Hong Zhang ◽  
Jeong Heon Yoon ◽  
David William Scott

Abstract Expanded antigen-specific engineered regulatory T cells (Tregs) have been proposed for potential clinical application for the treatment of undesirable immune responses, such as inhibitor responses in hemophilia A patients and autoimmune diseases. By providing an antigen-specific T-cell receptor (TCR) to polyclonal natural Tregs, we suggested that antigen-specific engineered Tregs would migrate specifically to particular target tissues and induce antigen-specific immune tolerance in the local milieu. Previously, we developed FVIII C2-specific Tregs using a long-term stabilization protocol in vitro and demonstrated that these stabilized engineered Tregs successfully modulated FVIII-specific T-cell- and B-cell immune responses. Herein, we examined the mechanism of suppression by antigen-specific engineered Tregs compared to polyclonal normal natural Tregs. Initially, we tested whether these FVIII-specific engineered Tregs were able to suppress neighboring activated T-cell effectors locally. We found that FVIII C2-specific Tregs strongly suppressed myelin basic protein (MBP)-specific T effectors by presentation of both specific antigens in same APC population. However, we also observed that C2-specific Tregs could suppress MBP-specific T effectors presented on different APCs. These results imply contactless suppressive function of C2-specific engineered Tregs. Using a modified trans-well suppression assay, in which physical distance and clear separation between Tregs and a set of T effectors was created, we found that C2-specific activated Tregs showed significant contactless suppression only when T effectors were also present. In addition, and confirming previous studies with polyclonal Tregs, suppression by FVIII-specific engineered Tregs could be overcome by increasing the dose of IL-2 in co-culture media. This suggests that Tregs act, in part, by usurping IL-2 needed by T effectors to proliferate. Surprisingly, neutralization of CTLA-4 did not interfere with FVIII C2-specific suppression of engineered Tregs in contrast to the reversal seen with anti-CD3e-driven non-specific immunosuppression. Our data strongly suggest that suppressive function of FVIII-specific engineered Tregs is not restricted to cell-to-cell contact. Rather cross-talk of engineered Tregs and T effectors potentially generate a contactless suppressive mechanism to suppress other FVIII-specific multiple effector cells in the local milieu for effective immune tolerance. Understanding the mechanism of contactless suppression mechanism should provide critical clues to develop more effective engineered Tregs as a therapeutic tool in hemophilia A. (Supported by NIH grants HL061883 and HL126727) Disclosures Kim: Henry Jackson Foundation: Other: patent filed. Zhang:Henry Jackson Foundation: Other: patent filed. Scott:Henry Jackson Foundation: Other: patent filed.


2013 ◽  
Vol 13 (11) ◽  
pp. 2819-2830 ◽  
Author(s):  
M. Hu ◽  
C. Wang ◽  
G. Y. Zhang ◽  
M. Saito ◽  
Y. M. Wang ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1819-1819
Author(s):  
Peter Haeusermann ◽  
Laura Tabellini ◽  
Mary E. Flowers ◽  
Paul J. Martin ◽  
Paul A. Carpenter ◽  
...  

Abstract OBJECTIVE: The pathogenesis of chronic GVHD and particularly of its skin involvement is incompletely understood. Regulatory CD4+CD25+ T-cells have been shown to influence acute and chronic GVHD disease and so far heterogeneous results considering the frequency of these cells in chronic GVHD have been published. Additionally, reports indicate that chronic GVHD is associated with reduced expression of FoxP3 of these specific T-cells potentially related to posttransplant thymic insufficiency. These investigations have so far not been conducted in the particular setting of isolated chronic cutaneous GVHD. Our objective therefore was to investigate number, immunophenotype and gene expression of T-cells and particularly of regulatory T-cells in whole blood, CD4-enriched T-cells and regulatory T-cells in these patients. Moreover, as immunosuppressive drugs (calcineurin inhibitors and Rapamycine) have been shown to influence the frequency of regulatory T-cells in vitro, our focus was to specifically study highly selected patients without immunosuppressive medications including cyclosporine, FK-506, Rapamycine, Glucocorticosteroids and MTX and with or without active chronic cutaneous GVHD. METHODS: Since June 2005, 14 patients more than 365 days posttransplant because of hematologic malignancy and 4 normal controls have been investigated in this still ongoing study clinically and by T-cell immunophenotyping (whole blood, CD4+ T cells and regulatory T-cells) and gene expression (FoxP3, Il–10 and TGF-beta) with real time PCR. RESULTS: Of all patients included so far, preliminary results indicate, that patients without GVHD at all and without immunosuppressive drugs as well as patients with isolated chronic cutaneous GVHD and off immunosuppressive drugs have a comparable amount of regulatory T-cells and level of gene expression for FoxP3. Patients within these two highly selected subgroups do not have clinical and/or laboratory evidence for gastrointestinal or liver affection. CONCLUSION: With respect to our preliminary results, active chronic cutaneous GVHD in posttransplant patients after day 365 is not related to a decreased number of regulatory T-cells as well as to a reduced level of FoxP3 expression.


2019 ◽  
Vol 116 (51) ◽  
pp. 25784-25789 ◽  
Author(s):  
James D. Fisher ◽  
Stephen C. Balmert ◽  
Wensheng Zhang ◽  
Riccardo Schweizer ◽  
Jonas T. Schnider ◽  
...  

For individuals who sustain devastating composite tissue loss, vascularized composite allotransplantation (VCA; e.g., hand and face transplantation) has the potential to restore appearance and function of the damaged tissues. As with solid organ transplantation, however, rejection must be controlled by multidrug systemic immunosuppression with substantial side effects. As an alternative therapeutic approach inspired by natural mechanisms the body uses to control inflammation, we developed a system to enrich regulatory T cells (Tregs) in an allograft. Microparticles were engineered to sustainably release TGF-β1, IL-2, and rapamycin, to induce Treg differentiation from naïve T cells. In a rat hindlimb VCA model, local administration of this Treg-inducing system, referred to as TRI-MP, prolonged allograft survival indefinitely without long-term systemic immunosuppression. TRI-MP treatment reduced expression of inflammatory mediators and enhanced expression of Treg-associated cytokines in allograft tissue. TRI-MP also enriched Treg and reduced inflammatory Th1 populations in allograft draining lymph nodes. This local immunotherapy imparted systemic donor-specific tolerance in otherwise immunocompetent rats, as evidenced by acceptance of secondary skin grafts from the hindlimb donor strain and rejection of skin grafts from a third-party donor strain. Ultimately, this therapeutic approach may reduce, or even eliminate, the need for systemic immunosuppression in VCA or solid organ transplantation.


2008 ◽  
Vol 85 (6) ◽  
pp. 783-789 ◽  
Author(s):  
Ahmet Demirkiran ◽  
Thijs K. Hendrikx ◽  
Carla C. Baan ◽  
Luc J. W. van der Laan

Sign in / Sign up

Export Citation Format

Share Document