human pathology
Recently Published Documents


TOTAL DOCUMENTS

536
(FIVE YEARS 158)

H-INDEX

47
(FIVE YEARS 8)

2022 ◽  
Vol 23 (2) ◽  
pp. 914
Author(s):  
Lorena Pochini ◽  
Michele Galluccio ◽  
Mariafrancesca Scalise ◽  
Lara Console ◽  
Gilda Pappacoda ◽  
...  

The Novel Organic Cation Transporter, OCTN1, is the first member of the OCTN subfamily; it belongs to the wider Solute Carrier family SLC22, which counts many members including cation and anion organic transporters. The tertiary structure has not been resolved for any cation organic transporter. The functional role of OCNT1 is still not well assessed despite the many functional studies so far conducted. The lack of a definitive identification of OCTN1 function can be attributed to the different experimental systems and methodologies adopted for studying each of the proposed ligands. Apart from the contradictory data, the international scientific community agrees on a role of OCTN1 in protecting cells and tissues from oxidative and/or inflammatory damage. Moreover, the involvement of this transporter in drug interactions and delivery has been well clarified, even though the exact profile of the transported/interacting molecules is still somehow confusing. Therefore, OCTN1 continues to be a hot topic in terms of its functional role and structure. This review focuses on the most recent advances on OCTN1 in terms of functional aspects, physiological roles, substrate specificity, drug interactions, tissue expression, and relationships with pathology.


2021 ◽  
Vol 5 (2) ◽  
pp. 138-142
Author(s):  
V. H. Hryn ◽  

Background. In recent years, there have emerged new directions in the study of the histological structure of the digestive tract in humans and mammals and, in particular, white rats, since non-inbred white rats are the main model for reproducing human pathology under experimental conditions as well as for preclinical testing of new drugs. Objective. A comparative study of the histological features of the cecum and appendix in rats and humans by means of bibliographic analysis. Material and methods. Bibliographic analysis is based on published peer-reviewed articles, books, textbooks, monographs, dissertation abstracts. For the purposes of a systematic review, the literature search (concerning the study of the histological structure of the cecum and appendix) was carried out on the Internet, in native literature sources, the scientific and electronic library of Poltava State Medical University using the following keywords: “histology”, “microscopic structure”, "digestive system", "cecum", "appendix", "white rats", "rat anatomy". Results. The mucous membrane of the gastrointestinal tract of white rats, in terms of its histological structure, is similar enough to that of humans to serve as an object in the experimental modeling of certain pathological conditions of the digestive system. Conclusions. There has been found an increased concentration of lymphoid nodules in cecal mucosa of white rats. In white rats and humans, the cecum and the appendix in humans are endowed with the same immune defense structures, which together represent the immune system of the digestive tract mucosa.


2021 ◽  
Vol 22 ◽  
Author(s):  
Idris Zubairu Sadiq

: Free radical contained one or more unpaired electrons in its valence shell, thus making it unstable, short-lived and highly reactive specie. Excessive generation of these free radicals ultimately leads to oxidative stress causing oxidation and damage to significant macromolecules in the living system and essentially disrupting signal transduction pathways and antioxidants equilibrium. At lower concentrations, ROS serves as “second messengers” influencing many physiological processes in the cell. However, at higher concentrations beyond cell capacity causes oxidative stress, which contributes to much human pathology such as diabetes, cancer, Parkinson’s disease, cardiovascular diseases, cataract, asthma, hypertension, atherosclerosis, arthritis and Alzheimer’s disease. Signaling pathways such as NF-κB, MAPKs, PI3K/Akt/ mTOR and Keap1-Nrf2-ARE modulates the detrimental effects of oxidative stress by increasing the expression of cellular antioxidant defenses, phase II detoxification enzymes and decreased production of ROS. Free radicals such as H2O2 are indeed needed for the advancement of cell cycle as these molecules influences DNA, proteins and enzymes in the cell cycle pathway. In the course of cell cycle progression, the cellular redox environment becomes more oxidized moving from G1 phase, becomes higher in G2/M and moderate in S phase. Signals in the form of an increase in cellular pro-oxidant levels are required and these signals are often terminated by a rise in the amount of antioxidants and MnSOD with a decrease in the level of cyclin D1 proteins. Therefore, understanding the mechanism of cell cycle redox regulation will help in therapy of many diseases.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261476
Author(s):  
Giulia Venturi ◽  
Federico Zacchini ◽  
Cinzia Lucia Vaccari ◽  
Davide Trerè ◽  
Lorenzo Montanaro

The ribosomal RNA 5.8S is one of the four rRNAs that constitute ribosomes. In human cells, like in all eukaryotes, it derives from the extensive processing of a long precursor containing the sequence of 18S, 5.8S and 28S rRNAs. It has been confirmed also in human cells the presence of three isoforms of 5.8S rRNA: one more abundant called 5.8S short, one called 5.8S long bearing 5 extra-nucleotides at its 5’ end and one 10 nucleotide shorter called 5.8S cropped. So far, little is known about 5.8S long specific role in cell biology and its function in human pathology. The lack of studies on the three 5.8S isoforms could be due to the techniques usually applied to study ribosome biogenesis, such as Northern blot with radioactively labelled probes, that require strict protective measures, and abundant and high-quality samples. To overcome this issue, we optimized a method that combines primer extension with a fluorescently labeled reverse primer designed on the 3’ of 5.8S rRNA sequence and fragment analysis. The resulting electropherogram shows the peaks corresponding to the three isoforms of 5.8S rRNA. The estimation of the area underneath the peaks allows to directly quantify the isoforms and to express their relative abundance. The relative abundance of 5.8S long and 5.8S short remains constant using scalar dilution of RNA and in samples subjected to partial degradation. 5.8S cropped abundance varies significantly in lower concentrate RNA samples. This method allows to analyze rapidly and safely the abundance of 5.8S rRNA isoforms in samples that have been so far considered not suitable such as poorly concentrated samples, RNA derived from frozen tissue or unique samples.


2021 ◽  
Author(s):  
Matthias Przyklenk ◽  
Veronika Georgieva ◽  
Fabian Metzen ◽  
Sebastian Mostert ◽  
Birgit Kobbe ◽  
...  

LTBP1 is a large extracellular matrix protein and an associated ligand of fibrillin-microfibrils. Knowledge of LTBP1 functions is largely limited to its role in targeting and sequestering TGFβ growth factors within the extracellular matrix, thereby regulating their bioavailability. However, the recent description of a wide spectrum of phenotypes in multiple tissues in patients harboring LTBP1 pathogenic variants suggests a multifaceted role of the protein in the homeostasis of connective tissues. To better understand the human pathology caused by LTBP1 deficiency it is important to investigate its functional role in extracellular matrix formation. In this study, we show that LTBP1 coordinates the incorporation of fibrillin-1 and -2 into the extracellular matrix in vitro. We also demonstrate that this function is differentially exerted by the two isoforms, the short and long forms of LTBP1. Thereby our findings uncover a novel TGFβ-independent LTBP1 function potentially contributing to the development of connective tissue disorders.


2021 ◽  
Vol 14 ◽  
Author(s):  
Chiara Tocco ◽  
Michele Bertacchi ◽  
Michèle Studer

The assembly and maturation of the mammalian brain result from an intricate cascade of highly coordinated developmental events, such as cell proliferation, migration, and differentiation. Any impairment of this delicate multi-factorial process can lead to complex neurodevelopmental diseases, sharing common pathogenic mechanisms and molecular pathways resulting in multiple clinical signs. A recently described monogenic neurodevelopmental syndrome named Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is caused by NR2F1 haploinsufficiency. The NR2F1 gene, coding for a transcriptional regulator belonging to the steroid/thyroid hormone receptor superfamily, is known to play key roles in several brain developmental processes, from proliferation and differentiation of neural progenitors to migration and identity acquisition of neocortical neurons. In a clinical context, the disruption of these cellular processes could underlie the pathogenesis of several symptoms affecting BBSOAS patients, such as intellectual disability, visual impairment, epilepsy, and autistic traits. In this review, we will introduce NR2F1 protein structure, molecular functioning, and expression profile in the developing mouse brain. Then, we will focus on Nr2f1 several functions during cortical development, from neocortical area and cell-type specification to maturation of network activity, hippocampal development governing learning behaviors, assembly of the visual system, and finally establishment of cortico-spinal descending tracts regulating motor execution. Whenever possible, we will link experimental findings in animal or cellular models to corresponding features of the human pathology. Finally, we will highlight some of the unresolved questions on the diverse functions played by Nr2f1 during brain development, in order to propose future research directions. All in all, we believe that understanding BBSOAS mechanisms will contribute to further unveiling pathophysiological mechanisms shared by several neurodevelopmental disorders and eventually lead to effective treatments.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1325
Author(s):  
Roberto De Masi ◽  
Stefania Orlando ◽  
Francesco Bagordo ◽  
Tiziana Grassi

Discovered in 1993 by Bange et al., the 35-kDa interferon-induced protein (IFP35) is a highly conserved cytosolic interferon-induced leucine zipper protein with a 17q12-21 coding gene and unknown function. Belonging to interferon stimulated genes (ISG), the IFP35 reflects the type I interferon (IFN) activity induced through the JAK-STAT phosphorylation, and it can homodimerize with N-myc-interactor (NMI) and basic leucine zipper transcription factor (BATF), resulting in nuclear translocation and a functional expression. Casein kinase 2-interacting protein-1 (CKIP-1), retinoic acid-inducible gene I (RIG-I), and laboratory of genetics and physiology 2 Epinephelus coioides (EcLGP2) are thought to regulate IFP35, via the innate immunity pathway. Several in vitro and in vivo studies on fish and mammals have confirmed the IFP35 as an ISG factor with antiviral and antiproliferative functions. However, in a mice model of sepsis, IFP35 was found working as a damage associated molecular pattern (DAMP) molecule, which enhances inflammation by acting in the innate immune-mediated way. In human pathology, the IFP35 expression level predicts disease outcome and response to therapy in Multiple Sclerosis (MS), reflecting IFN activity. Specifically, IFP35 was upregulated in Lupus Nephritis (LN), Rheumatoid Arthritis (RA), and untreated MS. However, it normalized in the MS patients undergoing therapy. The considered data indicate IFP35 as a pleiotropic factor, suggesting it as biologically relevant in the innate immunity, general pathology, and human demyelinating diseases of the central nervous system.


2021 ◽  
Author(s):  
Daniel R. Whiten ◽  
Dezerae Cox ◽  
Carolyn M. Sue

Abstract PTEN-induced kinase 1 (PINK1) impacts cell health and human pathology through diverse pathways. The strict processing of full-length PINK1 on the outer mitochondrial membrane populates a cytoplasmic pool of cleaved PINK1 (cPINK1) that is constitutively degraded. However, despite rapid proteasomal clearance, cPINK1 still appears to exert quality control influence over the neuronal protein homeostasis network, including protein synthesis and degradation machineries. The cytoplasmic concentration and activity of this molecule is therefore a powerful sensor that coordinates aspects of mitochondrial and cellular health. In addition, full-length PINK1 is retained on the mitochondrial membrane following depolarisation, where it is a powerful inducer of multiple mitophagic pathways. This function is executed primarily through the phosphorylation of several ubiquitin ligases, including its most widely studied substrate Parkin. Furthermore, the phosphorylation of both pro- and anti-apoptotic proteins by mitochondrial PINK1 acts as a pro-cellular survival signal when faced with apoptotic stimuli. Through these varied roles PINK1 directly influences functions central to cell dysfunction in neurodegenerative disease.


Author(s):  
Kerstin Walter ◽  
Julia Kokesch-Himmelreich ◽  
Axel Treu ◽  
Franziska Waldow ◽  
Doris Hillemann ◽  
...  

The Mycobacterium tuberculosis (Mtb)-harboring granuloma with a necrotic center surrounded by a fibrous capsule is the hallmark of tuberculosis (TB). For a successful treatment, antibiotics need to penetrate these complex structures to reach their bacterial targets. Hence, animal models reflecting the pulmonary pathology of TB patients are of particular importance to improve the pre-clinical validation of novel drug candidates. Mtb-infected interleukin-13 overexpressing (IL-13 tg ) mice develop a TB pathology very similar to patients and, in contrast to other mouse models, also share pathogenetic mechanisms. Accordingly, IL-13 tg animals represent an ideal model for analyzing the penetration of novel anti-TB drugs into various compartments of necrotic granulomas by matrix-assisted-laser-desorption/ionization-mass spectrometry imaging (MALDI MS imaging). In the present study, we evaluated the suitability of BALB/c IL-13 tg mice for determining the antibiotic distribution within necrotizing lesions. To this end, we established a workflow based on the inactivation of Mtb by gamma irradiation while preserving lung tissue integrity and drug distribution, which is essential for correlating drug penetration with lesion pathology. MALDI MS imaging analysis of clofazimine, pyrazinamide and rifampicin revealed a drug-specific distribution within different lesion types including cellular granulomas, developing in BALB/c wild-type mice, and necrotic granulomas of BALB/c IL-13 tg animals, emphasizing the necessity of pre-clinical models reflecting human pathology. Most importantly, our study demonstrates that BALB/c IL-13 tg mice recapitulate the penetration of antibiotics into human lesions. Therefore, our workflow in combination with the IL-13 tg mouse model provides an improved and accelerated evaluation of novel anti-TB drugs and new regimens in the pre-clinical stage.


Sign in / Sign up

Export Citation Format

Share Document