scholarly journals A novel cardiomyogenic role for Isl1+ neural crest cells in the inflow tract

2020 ◽  
Vol 6 (49) ◽  
pp. eaba9950
Author(s):  
Konstantinos E. Hatzistergos ◽  
Michael A. Durante ◽  
Krystalenia Valasaki ◽  
Amarylis C. B. A. Wanschel ◽  
J. William Harbour ◽  
...  

The degree to which populations of cardiac progenitors (CPCs) persist in the postnatal heart remains a controversial issue in cardiobiology. To address this question, we conducted a spatiotemporally resolved analysis of CPC deployment dynamics, tracking cells expressing the pan-CPC gene Isl1. Most CPCs undergo programmed silencing during early cardiogenesis through proteasome-mediated and PRC2 (Polycomb group repressive complex 2)–mediated Isl1 repression, selectively in the outflow tract. A notable exception is a domain of cardiac neural crest cells (CNCs) in the inflow tract. These “dorsal CNCs” are regulated through a Wnt/β-catenin/Isl1 feedback loop and generate a limited number of trabecular cardiomyocytes that undergo multiple clonal divisions during compaction, to eventually produce ~10% of the biventricular myocardium. After birth, CNCs continue to generate cardiomyocytes that, however, exhibit diminished clonal amplification dynamics. Thus, although the postnatal heart sustains cardiomyocyte-producing CNCs, their regenerative potential is likely diminished by the loss of trabeculation-like proliferative properties.

Development ◽  
1997 ◽  
Vol 124 (2) ◽  
pp. 505-514 ◽  
Author(s):  
S.J. Conway ◽  
D.J. Henderson ◽  
A.J. Copp

Neural crest cells originating in the occipital region of the avian embryo are known to play a vital role in formation of the septum of the cardiac outflow tract and to contribute cells to the aortic arches, thymus, thyroid and parathyroids. This ‘cardiac’ neural crest sub-population is assumed to exist in mammals, but without direct evidence. In this paper we demonstrate, using RT-PCR and in situ hybridisation, that Pax3 expression can serve as a marker of cardiac neural crest cells in the mouse embryo. Cells of this lineage were traced from the occipital neural tube, via branchial arches 3, 4 and 6, into the aortic sac and aorto-pulmonary outflow tract. Confirmation that these Pax3-positive cells are indeed cardiac neural crest is provided by experiments in which hearts were deprived of a source of colonising neural crest, by organ culture in vitro, with consequent lack of up-regulation of Pax3. Occipital neural crest cell outgrowths in vitro were also shown to express Pax3. Mutation of Pax3, as occurs in the splotch (Sp2H) mouse, results in development of conotruncal heart defects including persistent truncus arteriosus. Homozygotes also exhibit defects of the aortic arches, thymus, thyroid and parathyroids. Pax3-positive neural crest cells were found to emigrate from the occipital neural tube of Sp2H/Sp2H embryos in a relatively normal fashion, but there was a marked deficiency or absence of neural crest cells traversing branchial arches 3, 4 and 6, and entering the cardiac outflow tract. This decreased expression of Pax3 in Sp2H/Sp2H embryos was not due to down-regulation of Pax3 in neural crest cells, as use of independent neural crest markers, Hoxa-3, CrabpI, Prx1, Prx2 and c-met also revealed a deficiency of migrating cardiac neural crest cells in homozygous embryos. This work demonstrates the essential role of the cardiac neural crest in formation of the heart and great vessels in the mouse and, furthermore, shows that Pax3 function is required for the cardiac neural crest to complete its migration to the developing heart.


1998 ◽  
Vol 196 (2) ◽  
pp. 129-144 ◽  
Author(s):  
Karen Waldo ◽  
Sachiko Miyagawa-Tomita ◽  
Donna Kumiski ◽  
Margaret L. Kirby

Development ◽  
2000 ◽  
Vol 127 (9) ◽  
pp. 1869-1878 ◽  
Author(s):  
J.A. Epstein ◽  
J. Li ◽  
D. Lang ◽  
F. Chen ◽  
C.B. Brown ◽  
...  

Pax3 encodes a transcription factor expressed during mid-gestation in the region of the dorsal neural tube that gives rise to migrating neural crest populations. In the absence of Pax3, both humans and mice develop with neural crest defects. Homozygous Splotch embryos that lack Pax3 die by embryonic day 13.5 with cardiac defects that resemble those induced by neural crest ablation in chick models. This has led to the hypothesis that Pax3 is required for cardiac neural crest migration. However, cardiac derivatives of Pax3-expressing precursor cells have not been previously defined, and Pax3-expressing cells within the heart have not been well demonstrated. Hence, the precise role of Pax3 during cardiac development remains unclear. Here, we use a Cre-lox method to fate map Pax3-expressing neural crest precursors to the cardiac outflow tract. We show that although Pax3 itself is extinguished prior to neural crest populating the heart, derivatives of these precursors contribute to the aorticopulmonary septum. We further show that neural crest cells are found in the outflow tract of Splotch embryos, albeit in reduced numbers. This indicates that contrary to prior reports, Pax3 is not required for cardiac neural crest migration. Using a neural tube explant culture assay, we demonstrate that neural crest cells from Splotch embryos show normal rates of proliferation but altered migratory characteristics. These studies suggest that Pax3 is required for fine tuning the migratory behavior of the cardiac neural crest cells while it is not essential for neural crest migration.


2020 ◽  
Author(s):  
Jean-François Darrigrand ◽  
Mariana Valente ◽  
Glenda Comai ◽  
Pauline Martinez ◽  
Maxime Petit ◽  
...  

2020 ◽  
Vol 7 (2) ◽  
pp. 13
Author(s):  
Joshua W. Vincentz ◽  
David E. Clouthier ◽  
Anthony B. Firulli

Congenital heart defects (CHDs) occur with such a frequency that they constitute a significant cause of morbidity and mortality in both children and adults. A significant portion of CHDs can be attributed to aberrant development of the cardiac outflow tract (OFT), and of one of its cellular progenitors known as the cardiac neural crest cells (NCCs). The gene regulatory networks that identify cardiac NCCs as a distinct NCC population are not completely understood. Heart and neural crest derivatives (HAND) bHLH transcription factors play essential roles in NCC morphogenesis. The Hand1PA/OFT enhancer is dependent upon bone morphogenic protein (BMP) signaling in both cranial and cardiac NCCs. The Hand1PA/OFT enhancer is directly repressed by the endothelin-induced transcription factors DLX5 and DLX6 in cranial but not cardiac NCCs. This transcriptional distinction offers the unique opportunity to interrogate NCC specification, and to understand why, despite similarities, cranial NCC fate determination is so diverse. We generated a conditionally active transgene that can ectopically express DLX5 within the developing mouse embryo in a Cre-recombinase-dependent manner. Ectopic DLX5 expression represses cranial NCC Hand1PA/OFT-lacZ reporter expression more effectively than cardiac NCC reporter expression. Ectopic DLX5 expression induces broad domains of NCC cell death within the cranial pharyngeal arches, but minimal cell death in cardiac NCC populations. This study shows that transcription control of NCC gene regulatory programs is influenced by their initial specification at the dorsal neural tube.


2018 ◽  
Vol 247 (12) ◽  
pp. 1286-1296 ◽  
Author(s):  
Kimberly E. Inman ◽  
Carlo Donato Caiaffa ◽  
Kristin R. Melton ◽  
Lisa L. Sandell ◽  
Annita Achilleos ◽  
...  

2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Joshua Wayne Vincentz ◽  
Ralston Barnes ◽  
Beth Firulli ◽  
Douglas Spicer ◽  
Anthony Firulli

Author(s):  
Shun Yan ◽  
Jin Lu ◽  
Kai Jiao

The cardiac neural crest cells (cNCCs) is a transient, migratory cell population that contribute to the formation of major arteries and the septa and valves of the heart. Abnormal development of cNCCs leads to a spectrum of congenital heart defects that mainly affect the outflow region of the hearts. Signaling molecules and transcription factors are the best studied regulatory events controlling cNCC development. In recent years, however, accumulated evidence supports that epigenetic regulation also plays an important role in cNCC development. Here, we summarize the functions of epigenetic regulators during cNCC development as well as cNCC related cardiovascular defects. These factors include ATP-dependent chromatin remodeling factors, histone modifiers and DNA methylation modulators. In many cases, mutations in the genes encoding these factors are known to cause inborn heart diseases. A better understanding of epigenetic regulators, their activities and their roles during heart development will ultimately contribute to the development of new clinical applications for patients with congenital heart disease.


Sign in / Sign up

Export Citation Format

Share Document