Self-Assembled Plasmonic Nanoparticle Clusters

Science ◽  
2010 ◽  
Vol 328 (5982) ◽  
pp. 1135-1138 ◽  
Author(s):  
J. A. Fan ◽  
C. Wu ◽  
K. Bao ◽  
J. Bao ◽  
R. Bardhan ◽  
...  
Author(s):  
Jonathan Fan ◽  
Chihhui Wu ◽  
Kui Bao ◽  
Jiming Bao ◽  
Rizia Bardhan ◽  
...  

2019 ◽  
Vol 1 (2) ◽  
pp. 849-857 ◽  
Author(s):  
Alberto Alvarez-Fernandez ◽  
Karim Aissou ◽  
Gilles Pécastaings ◽  
Georges Hadziioannou ◽  
Guillaume Fleury ◽  
...  

Block copolymer-templated gold nanostructured surfaces of high refractive index due to controlled plasmonic nanoparticle shape.


Nano Letters ◽  
2006 ◽  
Vol 6 (11) ◽  
pp. 2617-2621 ◽  
Author(s):  
Carly S. Levin ◽  
Benjamin G. Janesko ◽  
Rizia Bardhan ◽  
Gustavo E. Scuseria ◽  
Jeffrey D. Hartgerink ◽  
...  

Nano Letters ◽  
2013 ◽  
Vol 13 (9) ◽  
pp. 4249-4256 ◽  
Author(s):  
Soo Hong Lee ◽  
Seung-Ho Yu ◽  
Ji Eun Lee ◽  
Aihua Jin ◽  
Dong Jun Lee ◽  
...  

ChemPlusChem ◽  
2014 ◽  
Vol 79 (11) ◽  
pp. 1631-1637 ◽  
Author(s):  
Kiyofumi Katagiri ◽  
Keiko Ohta ◽  
Kaori Sako ◽  
Kei Inumaru ◽  
Koichiro Hayashi ◽  
...  

Nano Letters ◽  
2007 ◽  
Vol 7 (3) ◽  
pp. 853-853
Author(s):  
Carly S. Levin ◽  
Benjamin G. Janesko ◽  
Rizia Bardhan ◽  
Gustavo E. Scuseria ◽  
Jeffrey D. Hartgerink ◽  
...  

2015 ◽  
Vol 51 (42) ◽  
pp. 8793-8796 ◽  
Author(s):  
Seunghoon Lee ◽  
Jong Wook Hong ◽  
Su-Un Lee ◽  
Young Wook Lee ◽  
Sang Woo Han

Au nanoparticle clusters were prepared by fine control over the galvanic replacement of Ag nanoparticles with Au precursors.


2017 ◽  
Vol 56 (9) ◽  
pp. 5295-5304 ◽  
Author(s):  
Huijuan Cai ◽  
Tingting Shen ◽  
Alexander M. Kirillov ◽  
Yu Zhang ◽  
Changfu Shan ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10595
Author(s):  
Vasanthan Devaraj ◽  
Jong-Min Lee ◽  
Ye-Ji Kim ◽  
Hyuk Jeong ◽  
Jin-Woo Oh

We reveal the significance of plasmonic nanoparticle’s (NP) shape and its surface morphology en route to an efficient self-assembled plasmonic nanoparticle cluster. A simplified model is simulated in the form of free-space dimer and trimer nanostructures (NPs in the shape of a sphere, cube, and disk). A ~200% to ~125% rise in near-field strength (gap mode enhancement) is observed for spherical NPs in comparison with cubical NPs (from 2 nm to 8 nm gap sizes). Full-width three-quarter maximum reveals better broad-spectral optical performance in a range of ~100 nm (dimer) and ~170 nm (trimer) from spherical NPs as compared to a cube (~60 nm for dimer and trimer). These excellent properties for sphere-based nanostructures are merited from its dipole mode characteristics.


Sign in / Sign up

Export Citation Format

Share Document