scholarly journals Herschel Detects a Massive Dust Reservoir in Supernova 1987A

Science ◽  
2011 ◽  
Vol 333 (6047) ◽  
pp. 1258-1261 ◽  
Author(s):  
M. Matsuura ◽  
E. Dwek ◽  
M. Meixner ◽  
M. Otsuka ◽  
B. Babler ◽  
...  

We report far-infrared and submillimeter observations of supernova 1987A, the star whose explosion was observed on 23 February 1987 in the Large Magellanic Cloud, a galaxy located 160,000 light years away. The observations reveal the presence of a population of cold dust grains radiating with a temperature of about 17 to 23 kelvin at a rate of about 220 times the luminosity of the Sun. The intensity and spectral energy distribution of the emission suggest a dust mass of about 0.4 to 0.7 times the mass of the Sun. The radiation must originate from the supernova ejecta and requires the efficient precipitation of all refractory material into dust. Our observations imply that supernovae can produce the large dust masses detected in young galaxies at very high redshifts.

2011 ◽  
Vol 7 (S284) ◽  
pp. 112-116
Author(s):  
Brent Groves ◽  
Oliver Krause ◽  

AbstractDue to its proximity, the Andromeda galaxy (M31, NGC 224) offers a unique insight into how the spectra of stars, dust, and gas combine to form the integrated Spectral Energy Distribution (SED) of galaxies. We introduce here Herschel Space Observatory PACS and SPIRE photometric observations of M31 which cover the far-infrared to sub-mm wavelengths (70-500 μm). These new observations reveal that the total IR luminosity of M31 is relatively weak, with LIR=109.65L⊙, only 10% of the total luminosity of M31. However, as seen in the previous studies of M31, the IR luminosity is dominated by a 10 kpc ring in all Herschel bands. This is distinct from the optical, where the bulge in the central 2kpc, dominates the luminosity, clearly demonstrating how different components at distinct positions in a galaxy contribute to make the integrated SED.


2018 ◽  
Vol 610 ◽  
pp. A74
Author(s):  
Mark Kidger ◽  
Staszek Zola ◽  
Mauri Valtonen ◽  
Anne Lähteenmäki ◽  
Emilia Järvelä ◽  
...  

Context. The blazar OJ 287 has shown a ≈12 year quasi-periodicity over more than a century, in addition to the common properties of violent variability in all frequency ranges. It is the strongest known candidate to have a binary singularity in its central engine. Aim. We aim to better understand the different emission components by searching for correlated variability in the flux over four decades of frequency measurements. Methods. We combined data at frequencies from the millimetric to the visible to characterise the multifrequency light curve in April and May 2010. This includes the only photometric observations of OJ 287 made with the Herschel Space Observatory: five epochs of data obtained over 33 days at 250, 350, and 500 μm with Herschel-SPIRE. Results. Although we find that the variability at 37 GHz on timescales of a few weeks correlates with the visible to near-IR spectral energy distribution, there is a small degree of reddening in the continuum at lower flux levels that is revealed by the decreasing rate of decline in the light curve at lower frequencies. However, we see no clear evidence that a rapid flare detected in the light curve during our monitoring in the visible to near-IR light curve is seen either in the Herschel data or at 37 GHz, suggesting a low-frequency cut-off in the spectrum of such flares. Conclusions.We see only marginal evidence of variability in the observations with Herschel over a month, although this may be principally due to the poor sampling. The spectral energy distribution between 37 GHz and the visible can be characterised by two components of approximately constant spectral index: a visible to far-IR component of spectral index α = −0.95, and a far-IR to millimetric spectral index of α = −0.43. There is no evidence of an excess of emission that would be consistent with the 60 μmdust bump found in many active galactic nuclei.


2019 ◽  
Vol 15 (S341) ◽  
pp. 211-215
Author(s):  
Y. Tamura ◽  
K. Mawatari ◽  
T. Hashimoto ◽  
A. K. Inoue ◽  
E. Zackrissonm ◽  
...  

AbstractWe present ALMA detection of the [O iii] 88 μm line and 850 μm dust continuum emission in a Y-dropout Lyman break galaxy, MACS0416_Y1. The [O iii] detection confirms the object with a spectroscopic redshift to be z = 8.3118±0.0003. The 850 μm continuum intensity (0.14 mJy) implies a large dust mass on the order of 4×106M⊙. The ultraviolet-to-far infrared spectral energy distribution modeling, where the [O iii] emissivity model is incorporated, suggests the presence of a young (τage ≍ 4 Myr), star-forming (SFR ≍ 60M⊙yr−1), and moderately metal-polluted (Z ≍ 0.2Z⊙) stellar component with a stellar mass of 3 × 108M⊙. An analytic dust mass evolution model with a single episode of star formation does not reproduce the metallicity and dust mass in ≍ 4 Myr, suggesting an underlying evolved stellar component as the origin of the dust mass.


2021 ◽  
Vol 504 (2) ◽  
pp. 2133-2145
Author(s):  
Maria Niculescu-Duvaz ◽  
M J Barlow ◽  
A Bevan ◽  
D Milisavljevic ◽  
I De Looze

ABSTRACT The large quantities of dust that have been found in a number of high-redshift galaxies have led to suggestions that core-collapse supernovae (CCSNe) are the main sources of their dust and have motivated the measurement of the dust masses formed by local CCSNe. For Cassiopeia A (Cas A), an oxygen-rich remnant of a Type IIb CCSN, a dust mass of 0.6–1.1 M⊙ has already been determined by two different methods, namely (a) from its far-infrared spectral energy distribution and (b) from analysis of the red–blue emission line asymmetries in its integrated optical spectrum. We present a third, independent, method for determining the mass of dust contained within Cas A. This compares the relative fluxes measured in similar apertures from [O iii] far-infrared and visual-region emission lines, taking into account foreground dust extinction, in order to determine internal dust optical depths, from which corresponding dust masses can be obtained. Using this method, we determine a dust mass within Cas A of at least 0.99$^{+0.10}_{-0.09}$ M⊙.


Author(s):  
Isabella Lamperti ◽  
Amélie Saintonge ◽  
Ilse De Looze ◽  
Gioacchino Accurso ◽  
Christopher J R Clark ◽  
...  

Abstract We study the dust properties of 192 nearby galaxies from the JINGLE survey using photometric data in the 22-850$\mu$m range. We derive the total dust mass, temperature T and emissivity index β of the galaxies through the fitting of their spectral energy distribution (SED) using a single modified black-body model (SMBB). We apply a hierarchical Bayesian approach that reduces the known degeneracy between T and β. Applying the hierarchical approach, the strength of the T-β anti-correlation is reduced from a Pearson correlation coefficient R = −0.79 to R = −0.52. For the JINGLE galaxies we measure dust temperatures in the range 17 − 30 K and dust emissivity indices β in the range 0.6 − 2.2. We compare the SMBB model with the broken emissivity modified black-body (BMBB) and the two modified black-bodies (TMBB) models. The results derived with the SMBB and TMBB are in good agreement, thus applying the SMBB, which comes with fewer free parameters, does not penalize the measurement of the cold dust properties in the JINGLE sample. We investigate the relation between T and β and other global galaxy properties in the JINGLE and Herschel Reference Survey (HRS) sample. We find that β correlates with the stellar mass surface density (R = 0.62) and anti-correlates with the HI mass fraction (MHI/M*, R = −0.65), whereas the dust temperature correlates strongly with the SFR normalized by the dust mass (R = 0.73). These relations can be used to estimate T and β in galaxies with insufficient photometric data available to measure them directly through SED fitting.


Sign in / Sign up

Export Citation Format

Share Document