scholarly journals Traffic Jams Reduce Hydrolytic Efficiency of Cellulase on Cellulose Surface

Science ◽  
2011 ◽  
Vol 333 (6047) ◽  
pp. 1279-1282 ◽  
Author(s):  
Kiyohiko Igarashi ◽  
Takayuki Uchihashi ◽  
Anu Koivula ◽  
Masahisa Wada ◽  
Satoshi Kimura ◽  
...  

A deeper mechanistic understanding of the saccharification of cellulosic biomass could enhance the efficiency of biofuels development. We report here the real-time visualization of crystalline cellulose degradation by individual cellulase enzymes through use of an advanced version of high-speed atomic force microscopy. Trichoderma reesei cellobiohydrolase I (TrCel7A) molecules were observed to slide unidirectionally along the crystalline cellulose surface but at one point exhibited collective halting analogous to a traffic jam. Changing the crystalline polymorphic form of cellulose by means of an ammonia treatment increased the apparent number of accessible lanes on the crystalline surface and consequently the number of moving cellulase molecules. Treatment of this bulky crystalline cellulose simultaneously or separately with T. reesei cellobiohydrolase II (TrCel6A) resulted in a remarkable increase in the proportion of mobile enzyme molecules on the surface. Cellulose was completely degraded by the synergistic action between the two enzymes.

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Martina Rangl ◽  
Atsushi Miyagi ◽  
Julia Kowal ◽  
Henning Stahlberg ◽  
Crina M. Nimigean ◽  
...  

AbstractEukaryotic cyclic nucleotide-modulated (CNM) ion channels perform various physiological roles by opening in response to cyclic nucleotides binding to a specialized cyclic nucleotide-binding domain. Despite progress in structure-function analysis, the conformational rearrangements underlying the gating of these channels are still unknown. Here, we image ligand-induced conformational changes in single CNM channels from Mesorhizobium loti (MloK1) in real-time, using high-speed atomic force microscopy. In the presence of cAMP, most channels are in a stable conformation, but a few molecules dynamically switch back and forth (blink) between at least two conformations with different heights. Upon cAMP depletion, more channels start blinking, with blinking heights increasing over time, suggestive of slow, progressive loss of ligands from the tetramer. We propose that during gating, MloK1 transitions from a set of mobile conformations in the absence to a stable conformation in the presence of ligand and that these conformations are central for gating the pore.


2009 ◽  
Vol 284 (52) ◽  
pp. 36186-36190 ◽  
Author(s):  
Kiyohiko Igarashi ◽  
Anu Koivula ◽  
Masahisa Wada ◽  
Satoshi Kimura ◽  
Merja Penttilä ◽  
...  

2016 ◽  
Vol 83 (2) ◽  
Author(s):  
Narumon Tangthirasunun ◽  
David Navarro ◽  
Sona Garajova ◽  
Didier Chevret ◽  
Laetitia Chan Ho Tong ◽  
...  

ABSTRACT Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. IMPORTANCE Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO.


2020 ◽  
Author(s):  
Olusola A. Ogunyewo ◽  
Anmoldeep Randhawa ◽  
Mayank Gupta ◽  
Vemula Chandra Kaladhar ◽  
Praveen Kumar Verma ◽  
...  

AbstractLytic polysaccharide monooxygenases (LPMOs) are crucial industrial enzymes required in the biorefinery industry as well as in natural carbon cycle. These enzymes known to possess auxiliary activity are produced by numerous bacterial and fungal species to assist in the degradation of cellulosic biomass. In this study, we annotated and performed structural analysis of an uncharacterized thermostable LPMO from Penicillium funiculosum (PfLPMO9) in an attempt to understand nature of this enzyme in biomass degradation. PfLPMO9 exhibited 75% and 36% structural identity to Thermoascus aurantiacus (TaLPMO9A) and Lentinus similis (LsLPMO9A), respectively. Analysis of the molecular interactions during substrate binding revealed that PfLPMO9 demonstrated a higher binding affinity with a ΔG free energy of -46 k kcal/mol when compared with that of TaLPMO9A (−31 kcal/mol). The enzyme was further found to be highly thermostable at elevated temperature with a half-life of ∼88 h at 50 °C. Furthermore, multiple fungal genetic manipulation tools were employed to simultaneously overexpress this LPMO and Cellobiohydrolase I (CBH1) in catabolite derepressed strain of Penicillium funiculosum, PfMig188, in order to improve its saccharification performance towards acid pretreated wheat straw (PWS) at 20% substrate loading. The resulting transformants showed ∼200% and ∼66% increase in LPMO and Avicelase activities, respectively. While the secretomes of individually overexpressed LPMO and CBH1-strains increased saccharification of PWS by 6% and 13%, respectively, over PfMig188 at same enzyme concentration, the simultaneous overexpression of these two genes led to 20% increase in saccharification efficiency over PfMig188, which accounted for 82% saccharification of PWS at 20% substrate loading.ImportanceEnzymatic hydrolysis of cellulosic biomass by cellulases continues to be a significant bottleneck in the development of second-generation bio-based industries. While efforts are being intensified at how best to obtain indigenous cellulase for biomass hydrolysis, the high production cost of this enzyme remains a crucial challenge confronting its wide availability for efficient utilization of cellulosic materials. This is because it is challenging to get an enzymatic cocktail with balanced activity from a single host. This report provides for the first time the annotation and structural analysis of an uncharacterized thermostable lytic polysaccharide monooxygenase (LPMO) gene in Penicillium funiculosum and its impact in biomass deconstruction upon overexpression in catabolite derepressed strain of P. funiculosum. Cellobiohydrolase I (CBH1) which is the most important enzyme produced by many cellulolytic fungi for saccharification of crystalline cellulose was further overexpressed simultaneously with the LPMO. The resulting secretome was analyzed for enhanced LPMO and exocellulase activities with the corresponding improvement in its saccharification performance at high substrate loading by ∼20% using a minimal amount of protein.


2020 ◽  
Vol 86 (23) ◽  
Author(s):  
Olusola A. Ogunyewo ◽  
Anmoldeep Randhawa ◽  
Mayank Gupta ◽  
Vemula Chandra Kaladhar ◽  
Praveen Kumar Verma ◽  
...  

ABSTRACT Lytic polysaccharide monooxygenases (LPMOs) are crucial industrial enzymes required in the biorefinery industry as well as in the natural carbon cycle. These enzymes, known to catalyze the oxidative cleavage of glycosidic bonds, are produced by numerous bacterial and fungal species to assist in the degradation of cellulosic biomass. In this study, we annotated and performed structural analysis of an uncharacterized LPMO from Penicillium funiculosum (PfLPMO9) based on computational methods in an attempt to understand the behavior of this enzyme in biomass degradation. PfLPMO9 exhibited 75% and 36% sequence identities with LPMOs from Thermoascus aurantiacus (TaLPMO9A) and Lentinus similis (LsLPMO9A), respectively. Furthermore, multiple fungal genetic manipulation tools were employed to simultaneously overexpress LPMO and cellobiohydrolase I (CBH1) in a catabolite-derepressed strain of Penicillium funiculosum, PfMig188 (an engineered variant of P. funiculosum), to improve its saccharification performance toward acid-pretreated wheat straw (PWS) at 20% substrate loading. The resulting transformants showed improved LPMO and CBH1 expression at both the transcriptional and translational levels, with ∼200% and ∼66% increases in ascorbate-induced LPMO and Avicelase activities, respectively. While the secretome of PfMig88 overexpressing LPMO or CBH1 increased the saccharification of PWS by 6% or 13%, respectively, over the secretome of PfMig188 at the same protein concentration, the simultaneous overexpression of these two genes led to a 20% increase in saccharification efficiency over that observed with PfMig188, which accounted for 82% saccharification of PWS under 20% substrate loading. IMPORTANCE The enzymatic hydrolysis of cellulosic biomass by cellulases continues to be a significant bottleneck in the development of second-generation biobased industries. While increasing efforts are being made to obtain indigenous cellulases for biomass hydrolysis, the high production cost of this enzyme remains a crucial challenge affecting its wide availability for the efficient utilization of cellulosic materials. This is because it is challenging to obtain an enzymatic cocktail with balanced activity from a single host. This report describes the annotation and structural analysis of an uncharacterized lytic polysaccharide monooxygenase (LPMO) gene in Penicillium funiculosum and its impact on biomass deconstruction upon overexpression in a catabolite-derepressed strain of P. funiculosum. Cellobiohydrolase I (CBH1), which is the most important enzyme produced by many cellulolytic fungi for the saccharification of crystalline cellulose, was further overexpressed simultaneously with LPMO. The resulting secretome was analyzed for enhanced LPMO and exocellulase activities and the corresponding improvement in saccharification performance (by ∼20%) under high-level substrate loading using a minimal amount of protein.


Sign in / Sign up

Export Citation Format

Share Document