scholarly journals Cleavage of Fibrinogen by Proteinases Elicits Allergic Responses Through Toll-Like Receptor 4

Science ◽  
2013 ◽  
Vol 341 (6147) ◽  
pp. 792-796 ◽  
Author(s):  
Valentine Ongeri Millien ◽  
Wen Lu ◽  
Joanne Shaw ◽  
Xiaoyi Yuan ◽  
Garbo Mak ◽  
...  

Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies.

Immunology ◽  
2008 ◽  
Vol 124 (3) ◽  
pp. 401-411 ◽  
Author(s):  
Elisabetta Pace ◽  
Maria Ferraro ◽  
Liboria Siena ◽  
Mario Melis ◽  
Angela M. Montalbano ◽  
...  

2021 ◽  
Author(s):  
Shakti Sagar ◽  
Md. Imam Faizan ◽  
Nisha Chaudhary ◽  
Atish Gheware ◽  
Khushboo Sharma ◽  
...  

Mesenchymal stem cell (MSC) transplantation alleviates metabolic defects in diseased recipient cells by intercellular mitochondrial transport (IMT). However, the effect of host metabolic conditions on MSCs in general, and IMT in particular, has largely remained unexplored. This study has identified a molecular pathway that primarily governs the metabolic function and IMT of MSCs. We found underlying mitochondrial dysfunction, impaired mitophagy, and reduced IMT in MSCs derived from high-fat diet (HFD)-induced obese mice (MSC-Ob). Mechanistically, MSC-Ob failed to sequester their damaged mitochondria into LC3-dependent autophagosomes due to decrease in mitochondrial cardiolipin content, which we propose as a putative mitophagy receptor for LC3 in MSCs. Functionally, MSC-Ob exhibited diminished potential to rescue metabolic deficits and cell death in stress-induced epithelial cells. In a small molecule screen, we found pyrroloquinoline quinone (PQQ) as a regulator of mitophagy and IMT. Long-term culture of MSC-Ob with PQQ (MSC-ObPQQ) restored cardiolipin content and sequestration of mitochondria to autophagosomes with concomitant activation of mitophagy. Upon co-culture, MSC-ObPQQ rescued cell death in stress-induced epithelial cells by enhancing IMT. The beneficial effect of PQQ was also evident in MSCs derived from human subjects in an in vitro model. In two independent mice models, the transplantation of MSC-ObPQQ restored IMT to airway epithelial cells, improved their mitochondrial metabolism and attenuated features of allergic airway inflammation (AAI). However, unmodulated MSC-Ob failed to do so. In summary, we uncover the molecular mechanism leading to the therapeutic decline of obese-derived MSCs and highlight the importance of pharmacological modulation of these cells for therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document