The Muscular Dystrophies: Muscular Dystrophy in Man and Animal . Geoffrey H. Bourne and Ma. Nelly Golarz, Eds. Hafner, New York, 1963. xiv + 524 pp. Illus. $30.

Science ◽  
1964 ◽  
Vol 144 (3614) ◽  
pp. 41-42
Author(s):  
John F. Marchand
2021 ◽  
Vol 22 (10) ◽  
pp. 5276
Author(s):  
Coralie Croissant ◽  
Romain Carmeille ◽  
Charlotte Brévart ◽  
Anthony Bouter

Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.


2020 ◽  
pp. 204748732092305 ◽  
Author(s):  
Chrysanthos Grigoratos ◽  
Alberto Aimo ◽  
Andrea Barison ◽  
Vincenzo Castiglione ◽  
Giancarlo Todiere ◽  
...  

Muscular dystrophies are inherited disorders sharing similar clinical features and dystrophic changes on muscle biopsy. Duchenne muscular dystrophy is the most common inherited muscle disease of childhood, and Becker muscular dystrophy is a milder allelic variant with a slightly lower prevalence. Myotonic dystrophy is the most frequent form in adults. Cardiac magnetic resonance is the gold standard technique for the quantification of cardiac chamber volumes and function, and also enables a characterisation of myocardial tissue. Most cardiac magnetic resonance studies in the setting of muscular dystrophy were carried out at single centres, evaluated small numbers of patients and used widely heterogeneous protocols. Even more importantly, those studies analysed more or less extensively the patterns of cardiac involvement, but usually did not try to establish the added value of cardiac magnetic resonance to standard echocardiography, the evolution of cardiac disease over time and the prognostic significance of cardiac magnetic resonance findings. As a result, the large and heterogeneous amount of information on cardiac involvement in muscular dystrophies cannot easily be translated into recommendations on the optimal use of cardiac magnetic resonance. In this review, whose targets are cardiologists and neurologists who manage patients with muscular dystrophy, we try to summarise cardiac magnetic resonance findings in patients with muscular dystrophy, and the results of studies evaluating the role of cardiac magnetic resonance as a tool for diagnosis, risk stratification and follow-up. Finally, we provide some practical recommendations about the need and timing of cardiac magnetic resonance examination for the management of patients with muscular dystrophy.


2017 ◽  
Vol 16 (2) ◽  
pp. 71-73
Author(s):  
Liviu Cozma ◽  
◽  
Maria Barsevschi ◽  
Cristina Mitu ◽  
Alexandra Bastian ◽  
...  

Limb-girdle muscular dystrophies (LGMDs) comprise a phenotypical spectrum of muscular dystrophies with a high degree of genotypical variability. We describe the case of a 56-year-old male with a history and clinical picture sugestive for LGMD with skeletal and cardiologic involvement. Histopathological examination shows a severe dystrophic picture and geneting testing revealed a unique never reported genotype association: a homozygous variant in the DES gene, associated with myofibrillar myopathy type 1 and LGMD2R, as well as a heterozygous variant in the CRYAB gene, associated with myofibrillar myopathy type 2, both of which could be responsible for the clinical picture.


2021 ◽  
Vol 2 (3) ◽  
pp. 159-166
Author(s):  
Alexey L. Kurenkov ◽  
Lyudmila M. Kuzenkova ◽  
Lale A. Pak ◽  
Bella I. Bursagova ◽  
Tatyana V. Podkletnova ◽  
...  

Duchenne muscular dystrophy (DMD) is a disease with an X-linked recessive type of inheritance, belonging to a group of disorders with primary muscle damage, caused by pathogenic variants in the DMD gene and associated with dysfunction of the dystrophin protein. Since DMD is manifested by the gradual development of progressive, mainly proximal muscle weakness, the differential diagnosis is primarily carried out in the group of diseases with muscle damage - myopathies. Among these diseases, the leading candidates for differential diagnosis are hereditary myopathies (limb-girdle muscular dystrophies, facioscapulohumeral dystrophy, congenital muscular dystrophies, glycogenoses - the most common juvenile form of glycogenosis type II (Pompe disease)) and, much less often, congenital myopathies and other conditions of neuromuscular diseases). When conducting a differential diagnosis in a child with suspected DMD, the age of the onset of the disease, early initial clinical manifestations and the development of symptoms as they grow, genealogical analysis, laboratory tests (the level of creatine kinase, aspartate aminotransferase, alanine aminotransferase in blood serum), instrumental (electromyography, magnetic resonance imaging of the brain and muscles) and molecular genetics (polymerase chain reaction, multiplex ligation-dependent probe amplification, next-generation sequencing, Sanger sequencing, etc.) of studies, and in some cases, muscle biopsy data. Knowledge of the nuances of the differential diagnosis allows establishing a genetic diagnosis of DMD as early as possible, which is extremely important for the formation of the prognosis of the disease and the implementation of all available treatment methods, including pathogenetic therapy, and is also necessary for medical and genetic counselling of families with DMD patients.


2020 ◽  
Vol 13 (1) ◽  
pp. e230647
Author(s):  
Rajkumar Rajendram ◽  
Fahad AlDhahri ◽  
Naveed Mahmood ◽  
Mubashar Kharal

Muscular dystrophies are a heterogeneous group of disorders that commonly involve cardiac and skeletal muscle. Comprehensive guidelines for the management of cardiac failure and arrhythmias are available. However, the studies from which their recommendations are derived did not include any patients with muscular dystrophy. Some medications (eg, betablockers) may have significant side effects in this cohort. In some situations the use of agents with unique mechanisms of action such as ivabradine (a ‘funny’ channel inhibitor) may be more appropriate. Use of ivabradine has not previously been reported in limb girdle muscular dystrophy (LGMD). We describe the course of a patient with LGMD type 2I, cardiomyopathy and inappropriate sinus tachycardia treated with ivabradine. As advances in respiratory support have improved the outcomes of patients with muscular dystrophy; the prognostic significance of cardiac disease has increased. Ivabradine is tolerated and may reduce symptoms, morbidity and mortality in this cohort.


Sign in / Sign up

Export Citation Format

Share Document