Exploring the Solar System (III): Whence the Moon?

Science ◽  
1974 ◽  
Vol 186 (4167) ◽  
pp. 911-913
Author(s):  
A. L. Hammond
Keyword(s):  
1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


Author(s):  
Karel Schrijver

In this chapter, the author summarizes the properties of the Solar System, and how these were uncovered. Over centuries, the arrangement and properties of the Solar System were determined. The distinctions between the terrestrial planets, the gas and ice giants, and their various moons are discussed. Whereas humans have walked only on the Moon, probes have visited all the planets and several moons, asteroids, and comets; samples have been returned to Earth only from our moon, a comet, and from interplanetary dust. For Earth and Moon, seismographs probed their interior, whereas for other planets insights come from spacecraft and meteorites. We learned that elements separated between planet cores and mantels because larger bodies in the Solar System were once liquid, and many still are. How water ended up where it is presents a complex puzzle. Will the characteristics of our Solar System hold true for planetary systems in general?


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sune G. Nielsen ◽  
David V. Bekaert ◽  
Maureen Auro

AbstractIsotopic measurements of lunar and terrestrial rocks have revealed that, unlike any other body in the solar system, the Moon is indistinguishable from the Earth for nearly every isotopic system. This observation, however, contradicts predictions by the standard model for the origin of the Moon, the canonical giant impact. Here we show that the vanadium isotopic composition of the Moon is offset from that of the bulk silicate Earth by 0.18 ± 0.04 parts per thousand towards the chondritic value. This offset most likely results from isotope fractionation on proto-Earth during the main stage of terrestrial core formation (pre-giant impact), followed by a canonical giant impact where ~80% of the Moon originates from the impactor of chondritic composition. Our data refute the possibility of post-giant impact equilibration between the Earth and Moon, and implies that the impactor and proto-Earth mainly accreted from a common isotopic reservoir in the inner solar system.


Author(s):  
John H D Harrison ◽  
Amy Bonsor ◽  
Mihkel Kama ◽  
Andrew M Buchan ◽  
Simon Blouin ◽  
...  

Abstract White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by considering the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (>60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000 K to higher than 1,400 K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3σ significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.


2016 ◽  
Vol 118 (2-3) ◽  
pp. 133-158 ◽  
Author(s):  
Katherine H. Joy ◽  
Ian A. Crawford ◽  
Natalie M. Curran ◽  
Michael Zolensky ◽  
Amy F. Fagan ◽  
...  
Keyword(s):  

Author(s):  
Rachel L. Klima ◽  
Noah E. Petro

Water and/or hydroxyl detected remotely on the lunar surface originates from several sources: (i) comets and other exogenous debris; (ii) solar-wind implantation; (iii) the lunar interior. While each of these sources is interesting in its own right, distinguishing among them is critical for testing hypotheses for the origin and evolution of the Moon and our Solar System. Existing spacecraft observations are not of high enough spectral resolution to uniquely characterize the bonding energies of the hydroxyl molecules that have been detected. Nevertheless, the spatial distribution and associations of H, OH − or H 2 O with specific lunar lithologies provide some insight into the origin of lunar hydrous materials. The global distribution of OH − /H 2 O as detected using infrared spectroscopic measurements from orbit is here examined, with particular focus on regional geological features that exhibit OH − /H 2 O absorption band strengths that differ from their immediate surroundings. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


2019 ◽  
Vol 64 (8) ◽  
pp. 762-776
Author(s):  
E. M. Galimov

This article discusses some features of geochemistry of the Earth and the Moon, which manifests the specificity of the mechanism of their formation by fragmentation of protoplanetary gas-dust condensation (Galimov & Krivtsov, 2012). The principal difference between this model and other hypotheses of the Earth-Moon system formation, including the megaimpact hypothesis, is that it assumes the existence of a long stage of the dispersed state of matter, starting with the formation of protoplanetary gas-dust condensation, its compression and fragmentation and ending with the final accretion to the formed high-temperature embryos of the Earth and the Moon. The presence of the dispersed state allows a certain way to interpret the observed properties of the Earth-Moon system. Partial evaporation of solid particles due to adiabatic heating of the compressing condensation leads to the loss of volatiles including FeO. Computer simulations show that the final accretion is mainly performed on a larger fragment (the Earth’s embryo) and only slightly increases the mass of the smaller fragment (the Moon embryo).This explains the relative depletion of the Moon in iron and volatile and the increased concentration of refractory components compared to the Earth. The reversible nature of evaporation into the dispersed space, in contrast to the kinetic regime, and the removal of volatiles in the hydrodynamic flow beyond the gas-dust condensation determines the loss of volatiles without the effect of isotopes fractionation. The reversible nature of volatile evaporation also provides, in contrast to the kinetic regime, the preservation of part of the high-volatile components, such as water, in the planetary body, including the Moon. It follows from the essence of the model that at least a significant part of the Earth’s core is formed not by segregation of iron in the silicate-metal melt, but by evaporation and reduction of FeO in a dispersed medium, followed by deposition of clusters of elemental iron to the center of mass. This mechanism of formation of the core explains the observed excess of siderophilic elements in the Earth’s mantle. It also provides a plausible explanation for the observed character of iron isotopes fractionation (in terms of δ57Fe‰) on Earth and on the Moon. It solves the problem of the formation of iron core from initially oxide (FeO) form. The dispersed state of the substance during the period of accretion suggests that the loss of volatiles occurred during the time of accretion. Using the fact that isotopic systems: U–Pb, Rb–Sr, 129J–129Xe, 244Pu–136Xe, contain volatile components, it is possible to estimate the chronology of events in the evolution of the protoplanetary state. As a result, agreed estimates of the time of fragmentation of the primary protoplanetary condensation and formation of the embryos of the Earth and the Moon are obtained: from 10 to 40 million years, and the time of completion of the earth’s accretion and its birth as a planetary body: 110 – 130 million years after the emergence of the solar system. The presented interpretation is consistent with the fact that solid minerals on the Moon have already appeared at least 60 million years after the birth of the solar system (Barboni et al., 2017), and the metal core in the Earth and in the Moon could not have formed before 50 million years from the start of the solar system, as follows from the analysis of the Hf-W system (Kleine et al., 2009). It is shown that the hypothesis of megaimpact does not satisfy many constraints and does not create a basis for the explanation of the geochemistry of the Earth and the Moon.


Author(s):  
Bradley L. Jolliff

Earth’s moon, hereafter referred to as “the Moon,” has been an object of intense study since before the time of the Apollo and Luna missions to the lunar surface and associated sample returns. As a differentiated rocky body and as Earth’s companion in the solar system, much study has been given to aspects such as the Moon’s surface characteristics, composition, interior, geologic history, origin, and what it records about the early history of the Earth-Moon system and the evolution of differentiated rocky bodies in the solar system. Much of the Apollo and post-Apollo knowledge came from surface geologic exploration, remote sensing, and extensive studies of the lunar samples. After a hiatus of nearly two decades following the end of Apollo and Luna missions, a new era of lunar exploration began with a series of orbital missions, including missions designed to prepare the way for longer duration human use and further exploration of the Moon. Participation in these missions has become international. The more recent missions have provided global context and have investigated composition, mineralogy, topography, gravity, tectonics, thermal evolution of the interior, thermal and radiation environments at the surface, exosphere composition and phenomena, and characteristics of the poles with their permanently shaded cold-trap environments. New samples were recognized as a class of achondrite meteorites, shown through geochemical and mineralogical similarities to have originated on the Moon. New sample-based studies with ever-improving analytical techniques and approaches have also led to significant discoveries such as the determination of volatile contents, including intrinsic H contents of lunar minerals and glasses. The Moon preserves a record of the impact history of the solar system, and new developments in timing of events, sample based and model based, are leading to a new reckoning of planetary chronology and the events that occurred in the early solar system. The new data provide the grist to test models of formation of the Moon and its early differentiation, and its thermal and volcanic evolution. Thought to have been born of a giant impact into early Earth, new data are providing key constraints on timing and process. The new data are also being used to test hypotheses and work out details such as for the magma ocean concept, the possible existence of an early magnetic field generated by a core dynamo, the effects of intense asteroidal and cometary bombardment during the first 500 million–600 million years, sequestration of volatile compounds at the poles, volcanism through time, including new information about the youngest volcanism on the Moon, and the formation and degradation processes of impact craters, so well preserved on the Moon. The Moon is a natural laboratory and cornerstone for understanding many processes operating in the space environment of the Earth and Moon, now and in the past, and of the geologic processes that have affected the planets through time. The Moon is a destination for further human exploration and activity, including use of valuable resources in space. It behooves humanity to learn as much about Earth’s nearest neighbor in space as possible.


Sign in / Sign up

Export Citation Format

Share Document