Abrupt Climate Change and Extinction Events in Earth History

Science ◽  
1988 ◽  
Vol 240 (4855) ◽  
pp. 996-1002 ◽  
Author(s):  
T. J. Crowley ◽  
G. R. North
Author(s):  
Bernhard Weninger ◽  
Lee Clare

Recent advances in palaeoclimatological and meteorological research, combined with new radiocarbon data from western Anatolia and southeast Europe, lead us to formulate a new hypothesis for the temporal and spatial dispersal of Neolithic lifeways from their core areas of genesis. The new hypothesis, which we term the Abrupt Climate Change (ACC) Neolithization Model, incorporates a number of insights from modern vulnerability theory. We focus here on the Late Neolithic (Anatolian terminology), which is followed in the Balkans by the Early Neolithic (European terminology). From high-resolution 14C-case studies, we infer an initial (very rapid) west-directed movement of early farming communities out of the Central Anatolian Plateau towards the Turkish Aegean littoral. This move is exactly in phase (decadal scale) with the onset of ACC conditions (~6600 cal BC). Upon reaching the Aegean coastline, Neolithic dispersal comes to a halt. It is not until some 500 years later—that is, at the close of cumulative ACC and 8.2 ka cal BP Hudson Bay cold conditions—that there occurs a second abrupt movement of farming communities into Southeast Europe, as far as the Pannonian Basin. The spread of early farming from Anatolia into eastern Central Europe is best explained as Neolithic communities’ mitigation of biophysical and social vulnerability to natural (climate-induced) hazards.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
S. Bathiany ◽  
M. Scheffer ◽  
E. H. van Nes ◽  
M. S. Williamson ◽  
T. M. Lenton

Author(s):  
Alan M. Haywood ◽  
Andy Ridgwell ◽  
Daniel J. Lunt ◽  
Daniel J. Hill ◽  
Matthew J. Pound ◽  
...  

Given the inherent uncertainties in predicting how climate and environments will respond to anthropogenic emissions of greenhouse gases, it would be beneficial to society if science could identify geological analogues to the human race’s current grand climate experiment . This has been a focus of the geological and palaeoclimate communities over the last 30 years, with many scientific papers claiming that intervals in Earth history can be used as an analogue for future climate change. Using a coupled ocean–atmosphere modelling approach, we test this assertion for the most probable pre-Quaternary candidates of the last 100 million years: the Mid- and Late Cretaceous, the Palaeocene–Eocene Thermal Maximum (PETM), the Early Eocene, as well as warm intervals within the Miocene and Pliocene epochs. These intervals fail as true direct analogues since they either represent equilibrium climate states to a long-term CO 2 forcing—whereas anthropogenic emissions of greenhouse gases provide a progressive (transient) forcing on climate—or the sensitivity of the climate system itself to CO 2 was different. While no close geological analogue exists, past warm intervals in Earth history provide a unique opportunity to investigate processes that operated during warm (high CO 2 ) climate states. Palaeoclimate and environmental reconstruction/modelling are facilitating the assessment and calculation of the response of global temperatures to increasing CO 2 concentrations in the longer term (multiple centuries); this is now referred to as the Earth System Sensitivity, which is critical in identifying CO 2 thresholds in the atmosphere that must not be crossed to avoid dangerous levels of climate change in the long term. Palaeoclimatology also provides a unique and independent way to evaluate the qualities of climate and Earth system models used to predict future climate.


2012 ◽  
Vol 9 (11) ◽  
pp. 4679-4688 ◽  
Author(s):  
S. J. Gibbs ◽  
P. R. Bown ◽  
B. H. Murphy ◽  
A. Sluijs ◽  
K. M. Edgar ◽  
...  

Abstract. Late Paleocene and early Eocene hyperthermals are transient warming events associated with massive perturbations of the global carbon cycle, and are considered partial analogues for current anthropogenic climate change. Because the magnitude of carbon release varied between the events, they are natural experiments ideal for exploring the relationship between carbon cycle perturbations, climate change and biotic response. Here we quantify marine biotic variability through three million years of the early Eocene that include five hyperthermals, utilizing a method that allows us to integrate the records of different plankton groups through scenarios ranging from background to major extinction events. Our long time-series calcareous nannoplankton record indicates a scaling of biotic disruption to climate change associated with the amount of carbon released during the various hyperthermals. Critically, only the three largest hyperthermals, the Paleocene–Eocene Thermal Maximum (PETM), Eocene Thermal Maximum 2 (ETM2) and the I1 event, show above-background variance, suggesting that the magnitude of carbon input and associated climate change needs to surpass a threshold value to cause significant biotic disruption.


Sign in / Sign up

Export Citation Format

Share Document